Biodegradable Quantum Dot Nanocomposites Enable Live Cell Labeling and Imaging of Cytoplasmic Targets

Abstract

Semiconductor quantum dots (QDs) offer great promise as the new generation of fluorescent probes to image and study biological processes. Despite their superior optical properties, QDs for live cell monitoring and tracking of cytoplasmic processes remain limited due to inefficient delivery methods available, altered state or function of cells during the delivery process and the requirement of surface-functionalized QDs for specific labeling of subcellular structures. Here, we present a noninvasive method to image subcellular structures in live cells using bioconjugated QD nanocomposites. By incorporating antibody-coated QDs within biodegradable polymeric nanospheres, we have designed a bioresponsive delivery system that undergoes endolysosomal to cytosolic translocation via pH-dependent reversal of nanocomposite surface charge polarity. Upon entering the cytosol, the polymer nanospheres undergo hydrolysis thus releasing the QD bioconjugates. This approach facilitates multiplexed labeling of subcellular structures inside live cells without the requirement of cell fixation or membrane permeabilization. As compared to conventional intracellular delivery techniques, this approach allows the high throughput cytoplasmic delivery of QDs with minimal toxicity to the cell. More importantly, this development demonstrates an important rational strategy for the design of a multifunctional nanosystem for biological applications

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 16/03/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0