DNA-Dependent ATPase Activity of Bacterial XPB Helicases

Abstract

XPB, the largest subunit of the eukaryotic transcription factor TFIIH, is essential for both initiation of transcription by RNA polymerase II and nucleotide excision repair (NER). XPB belongs to the SF2 superfamily of monomeric helicases. XPB helicase is thought to have evolved in eukaryotes; however, a gene highly homologous to human XPB can be found in a number of bacteria. This report is the first biochemical characterization of XPB homologues from bacteria, specifically those from Mycobacterium tuberculosis and Kineococcus radiotolerans. Similarly to eukaryotic XPB, bacterial XPB are ATP-dependent 3′ → 5′ DNA helicases. The ATPase activity of these XPB helicases is DNA-dependent, requiring a minimum of 4-nucleotide long single-stranded DNA (ssDNA). The maximum rates of ATP hydrolysis are about 10 and 50 molecules per minute by one XPB monomer on a 21-nucleotide ssDNA oligomer and on 5-kb long circular ssDNA, respectively. The ATP hydrolysis by the bacterial XPBs is coupled to their translocation along single-stranded DNA. The hydrolytic activity is strongly dependent on both the nature of a nucleotide triphosphate and that of a divalent metal. The inefficient ATP hydrolysis by bacterial XPB is consistent with nonprocessive functions of its eukaryotic homologue in locally remodeling DNA during transcription initiation and NER

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 16/03/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0