Block Copolymer Morphologies in Dye-Sensitized Solar Cells: Probing the Photovoltaic Structure−Function Relation

Abstract

We integrate mesostructured titania arrays into dye-sensitized solar cells by replicating ordered, oriented one-dimensional (1D) columnar and three-dimensional (3D) bicontinuous gyroid block copolymer phases. The solar cell performance, charge transport, and recombination are investigated. We observe faster charge transport in 1D “wires” than through 3D gyroid arrays. However, owing to their structural instability, the surface area of the wire arrays is low, inhibiting the solar cell performance. The gyroid morphology, on the other hand, outperforms the current state-of-the-art mesoporous nanoparticle films

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 16/03/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0