Aptamer−DNAzyme Hairpins for Amplified Biosensing

Abstract

Engineered nucleic acid hairpin structures are used for the amplified analysis of low-molecular-weight substrates (adenosine monophosphate, AMP) or proteins (lysozyme). The hairpin structures consist of the anti-AMP or antilysozyme aptamer units linked to the horseradish peroxidase (HRP)-mimicking DNAzyme sequence. The HRP-mimicking DNAzyme sequence is protected in a “caged”, inactive structure in the stem regions of the respective hairpins, whereas the loop regions include a part of the respective aptamer sequence. The opening of the hairpins by the analytes, AMP or lysozyme, through the formation of the respective analyte−aptamer complexes, results in the self-assembly of the active HRP-mimicking DNAzyme. The DNAzyme catalyzes the H2O2-mediated oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2−) to the colored ABTS•−, thus providing the amplified optical detection of the respective analytes. The engineered aptamer−DNAzyme hairpin structures reveal significantly improved analytical performance, as compared to analogous fluorophore−quencher-labeled hairpins

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 16/03/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0