pH Induced Structural Modulation and Interfacial Activity of Hemoglobin at the Air/Water Interface

Abstract

In this Article, we report the surface activity of the human globular blood protein, hemoglobin (Hb), at the air/water interface. The Langmuir−Blodgett technique is used for monolayer characterization. The adsorption growth-kinetics study shows that the adsorption process at the air/water interface is involved with two mechanisms: one diffusion with adsorption and the other rearrangement with unfolding. The kinetics is found to be dependent on pH and protein concentration in the subphase. The CD and FTIR studies suggest larger intermolecular aggregate and β-sheet formation in the film lifted from the air/acidic water subphase. In alkaline pH and in isoelectric pH (6.8), not much variation is observed. The FE-SEM images support this observation. The acidic pH induced such conformational changes, and aggregation is explained with the argument of α-helix to β-sheet conversion as well as the competition between protonation and deprotonation of the aromatic-amino acid residues at the air/water interface

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 16/03/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0