7,716 research outputs found

    Modifying monolayer behaviour by incorporating subphase additives and improving Langmuir–Blodgett thin film deposition on optical fibres

    Get PDF
    Experiments showing the possibility of modifying the behaviour of calix[4]resorcinarene monolayers at the air–water interface and optimising the deposition of multilayer coatings onto optical fibres are presented. The nature of the subphase is fundamental to the behaviour of monolayers and their utility in coating and sensing applications. Here we show initial studies exploring the modification of the calix[4]resorcinarene monolayer–water interaction through the introduction of dipole altering alcohol additives to the aqueous subphase. We explored the effect of this modification for three small alcohols. The resulting isotherms of the materials showed a reduction in the surface pressure and area per molecule required in order for the monolayer to reach its point of collapse. Incorporation of alcohols shifted the point of collapse, leading to the application of ethanol being successful in improving the transfer of material via Langmuir–Blodgett coating onto optical fibres at lower pressures. This method may prove useful in allowing greater control over future sensor surface coatings

    Self-organized critical and synchronized states in a nonequilibrium percolation model

    Full text link
    We introduce a nonequilibrium percolation model which shows a self-organized critical (SOC) state and several periodic states. In the SOC state, the correlation length diverges slower than the system size, and the corresponding exponent depends non universally on the parameter of the model. The periodic states contain an infinite cluster covering only part of the system.Comment: 10 pages, Revtex, two uuencoded figure

    Effect of Subphase Ca++ Ions on the Viscoelastic Properties of Langmuir Monolayers

    Full text link
    It is known that the presence of cations like Ca++ or Pb++ in the water subphase alters the pressure-area isotherms for fatty acid monolayers. The corresponding lattice constant changes have been studied using x-ray diffraction. Reflection-absorption spectroscopy has been used to probe the chemical composition of the film. We report on the first measurements of the time evolution of the shear viscosity of arachidic acid monolayers in the presence of Ca++ ions in the subphase. We find that the introduction of Ca++ ions to the water subphase results in an increase of the film's viscosity by at least three orders of magnitude. This increase occurs in three distinct stages. First, there is a rapid change in the viscosity of up to one order of magnitude. This is followed by two periods, with very different time constants, of a relatively slow increase in the viscosity over the next 10 or more hours. The corresponding time constants for this rise decrease as either the subphase pH or Ca++ concentration is increased.Comment: 5 figure

    Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces

    Full text link
    The forces between colloidal particles at a decane-water interface, in the presence of low concentrations of a monovalent salt (NaCl) and of the surfactant sodium dodecylsulfate (SDS) in the aqueous subphase, have been studied using laser tweezers. In the absence of electrolyte and surfactant, particle interactions exhibit a long-range repulsion, yet the variation of the interaction for different particle pairs is found to be considerable. Averaging over several particle pairs was hence found to be necessary to obtain reliable assessment of the effects of salt and surfactant. It has previously been suggested that the repulsion is consistent with electrostatic interactions between a small number of dissociated charges in the oil phase, leading to a decay with distance to the power -4 and an absence of any effect of electrolyte concentration. However, the present work demonstrates that increasing the electrolyte concentration does yield, on average, a reduction of the magnitude of the interaction force with electrolyte concentration. This implies that charges on the water side also contribute significantly to the electrostatic interactions. An increase in the concentration of SDS leads to a similar decrease of the interaction force. Moreover the repulsion at fixed SDS concentrations decreases over longer times. Finally, measurements of three-body interactions provide insight into the anisotropic nature of the interactions. The unique time-dependent and anisotropic interactions between particles at the oil-water interface allow tailoring of the aggregation kinetics and structure of the suspension structure.Comment: Submitted to Langmui

    Structural properties and Raman spectroscopy of lipid Langmuir monolayers at the air-water interface

    Full text link
    Spectra of octadecylamine (ODA) Langmuir monolayers and egg phosphatidylcholine (PC)/ODA-mixed monolayers at the air-water interface have been acquired. The organization of the monolayers has been characterized by surface pressure-area isotherms. Application of polarized optical microscopy provides further insight in the domain structures and interactions of the film components. Surface-enhanced Raman scattering (SERS) data indicate that enhancement in Raman spectra can be obtained by strong interaction between headgroups of the surfactants and silver particles in subphase. By mixing ODA with phospholipid molecules and spreading the mixture at the air-water interface, we acquired vibrational information of phospholipid molecules with surfactant-aided SERS effect.Comment: 8 pages, 9 figure

    Lower Bounds for On-line Interval Coloring with Vector and Cardinality Constraints

    Full text link
    We propose two strategies for Presenter in the on-line interval graph coloring games. Specifically, we consider a setting in which each interval is associated with a dd-dimensional vector of weights and the coloring needs to satisfy the dd-dimensional bandwidth constraint, and the kk-cardinality constraint. Such a variant was first introduced by Epstein and Levy and it is a natural model for resource-aware task scheduling with dd different shared resources where at most kk tasks can be scheduled simultaneously on a single machine. The first strategy forces any on-line interval coloring algorithm to use at least (5m3)dlogd+3(5m-3)\frac{d}{\log d + 3} different colors on an m(dk+logd+3)m(\frac{d}{k} + \log{d} + 3)-colorable set of intervals. The second strategy forces any on-line interval coloring algorithm to use at least 5m2dlogd+3\lfloor\frac{5m}{2}\rfloor\frac{d}{\log d + 3} different colors on an m(dk+logd+3)m(\frac{d}{k} + \log{d} + 3)-colorable set of unit intervals

    Stokes flow in a drop evaporating from a liquid subphase

    Full text link
    The evaporation of a drop from a liquid subphase is investigated. The two liquids are immiscible, and the contact angles between them are given by the Neumann construction. The evaporation of the drop gives rise to flows in both liquids, which are coupled by the continuity of velocity and shear-stress conditions. We derive self-similar solutions to the velocity fields in both liquids close to the three-phase contact line, where the drop geometry can be approximated by a wedge. We focus on the case where Marangoni stresses are negligible, for which the flow field consists of three contributions: flow driven by the evaporative flux from the drop surface, flow induced by the receding motion of the contact line, and an eigenmode flow that satisfies the homogeneous boundary conditions. The eigenmode flow is asymptotically subdominant for all contact angles. The moving contact-line flow dominates when the angle between the liquid drop and the horizontal surface of the liquid subphase is smaller than 9090^\circ, while the evaporative-flux driven flow dominates for larger angles. A parametric study is performed to show how the velocity fields in the two liquids depend on the contact angles between the liquids and their viscosity ratio.Comment: submitted to Physics of Fluid

    Two-dimensional protein crystallization via metal-ion coordination by naturally occurring surface histidines

    Get PDF
    A powerful and potentially general approach to the targeting and crystallization of proteins on lipid interfaces through coordination of surface histidine residues to lipid-chelated divalent metal ions is presented. This approach, which should be applicable to the crystallization of a wide range of naturally occurring or engineered proteins, is illustrated here by the crystallization of streptavidin on a monolayer of an iminodiacetate-Cu(II) lipid spread at the air-water interface. This method allows control of the protein orientation at interfaces, which is significant for the facile production of highly ordered protein arrays and for electron density mapping in structural analysis of two-dimensional crystals. Binding of native streptavidin to the iminodiacetate-Cu lipids occurs via His-87, located on the protein surface near the biotin binding pocket. The two-dimensional streptavidin crystals show a previously undescribed microscopic shape that differs from that of crystals formed beneath biotinylated lipids
    corecore