Article thumbnail

Solvothermal Synthesis, Crystal Growth, and Structure Determination of Sodium and Potassium Guanidinate

By Peter Klaus Sawinski (1294311) and Richard Dronskowski (1290309)

Abstract

Phase-pure NaCN<sub>3</sub>H<sub>4</sub> and KCN<sub>3</sub>H<sub>4</sub> were synthesized from molecular guanidine and elemental metal in liquid ammonia at room temperature and elevated pressure close to 10 atm. The crystal structures were determined at 100 K using single-crystal X-ray diffraction. Both compounds crystallize in the monoclinic system (<i>P</i>2<sub>1</sub>/<i>c</i>, No. 14) but are far from being isotypical. NaCN<sub>3</sub>H<sub>4</sub> (<i>a</i> = 7.9496(12) Å, <i>b</i> = 5.0328(8) Å, <i>c</i> = 9.3591(15) Å, β = 110.797(3)°, <i>Z</i> = 4) contains a tetrahedrally N-coordinated sodium cation while KCN<sub>3</sub>H<sub>4</sub> (<i>a</i> = 7.1200(9) Å, <i>b</i> = 6.9385(9) Å, <i>c</i> = 30.404(4) Å, β = 94.626(2)°, <i>Z</i> = 16) features a very large <i>c</i> axis and a rather complicated packing of irregularly N-coordinated potassium cations. In the crystal structures, the guanidinate anions resemble the motif known from RbCN<sub>3</sub>H<sub>4</sub>, that is, with one elongated C–<sup>(amino)</sup>N single bond and two shorter C–<sup>(imino)</sup>N bonds (bond order = 1.5) although the orientation of one N–H bond differs in the guanidinate anion of NaCN<sub>3</sub>H<sub>4</sub>. Both crystal structures and infrared spectroscopy evidence the presence of hydrogen-bridging bonds, and the vibrational properties were analyzed by <i>ab initio</i> phonon calculations

Topics: Biophysics, Biochemistry, Medicine, Cell Biology, Biotechnology, Hematology, Infectious Diseases, Virology, Chemical Sciences not elsewhere classified, Physical Sciences not elsewhere classified, ab initio phonon calculations, bond, KCN 3H, NaCN 3H, crystal structures
Year: 2012
DOI identifier: 10.1021/ic301005x.s003
OAI identifier: oai:figshare.com:article/2509606
Provided by: FigShare
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://figshare.com/articles/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.