Abstract

Self-assembling peptide materials have been used extensively to mimic natural extracellular matrices (ECMs) by presenting bioactive epitopes on a synthetic matrix. Although this approach can facilitate a desired response from cells grown in the matrix, it lacks the capacity for spatial or temporal regulation of the presented signals. We describe here a photoresponsive, synthetic ECM using a supramolecular platform composed of peptide amphiphiles (PAs) that self-assemble into cylindrical nanofibers. A photocleavable nitrobenzyl ester group was included in the peptide backbone using a novel Fmoc-amino acid that is compatible with microwave-assisted solid-phase peptide synthesis. The placement of the photolabile group on the peptide backbone enabled efficient removal of the ECM-derived cell adhesion epitope RGDS from PA molecules upon exposure to light (half-life of photolysis ∼1.9 min) without affecting the nanofiber assembly. Fibroblasts cultured on RGDS-presenting PA nanofiber substrates demonstrated increased cell spreading and more mature focal adhesions compared with unfunctionalized and control (RGES-presenting) surfaces, as determined by immunostaining and cell morphological analysis. Furthermore, we observed an arrest in fibroblast spreading on substrates containing a cleavable RGDS epitope when the culture was exposed to light; in contrast, this dynamic shift in cell response was absent when the RGDS epitope was attached to the PA molecule by a light-insensitive control linker. Light-responsive bioactive materials can contribute to the development of synthetic systems that more closely mimic the dynamic nature of native ECM

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 16/03/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.