Capture of pure toxic gases through porous materials from molecular simulations

Abstract

<p>In the last three decades, the air pollution is the main problem to affect human health and the environment in China and its contaminants include SO<sub>2,</sub> NH<sub>3,</sub> H<sub>2</sub>S, NO<sub>2</sub>, NO and CO. In this work, we employed grand canonical Monte Carlo simulations to investigate the adsorption capability of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) for these toxic gases. Eighty-nine MOFs and COFs were studied, and top-10 adsorption materials were screened for each toxic gas at room temperature. Dependence of the adsorption performance on the geometry and constructed element of MOFs/COFs was determined and the adsorption conditions were optimised. The open metal sites have mainly influenced the adsorption of NH<sub>3</sub>, H<sub>2</sub>S, NO<sub>2</sub> and NO. Especially, the X-DOBDC and XMOF-74 (X = Mg, Co, Ni, Zn) series of materials containing open metal sites are all best performance for adsorption of NH<sub>3</sub> to illustrate the importance of electrostatic interaction. Our simulation results also showed that ZnBDC and IRMOF-13 are good candidates to capture the toxic gases NH<sub>3,</sub> H<sub>2</sub>S, NO<sub>2</sub>, NO and CO. This work provides important insights in screening MOF and COF materials with satisfactory performance for toxic gas removal.</p

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 14/03/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.