Abstract

We report the direct growth of large, atomically thin GaSe single crystals on insulating substrates by vapor phase mass transport. A correlation is identified between the number of layers and a Raman shift and intensity change. We found obvious contrast of the resistance of the material in the dark and when illuminated with visible light. In the photoconductivity measurement we observed a low dark current. The on–off ratio measured with a 405 nm at 0.5 mW/mm<sup>2</sup> light source is in the order of 10<sup>3</sup>; the photoresponsivity is 17 mA/W, and the quantum efficiency is 5.2%, suggesting possibility for photodetector and sensor applications. The photocurrent spectrum of few-layer GaSe shows an intense blue shift of the excitation edge and expanded band gap compared with bulk material

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.