Nacre-Inspired Design of Mechanical Stable Coating with Underwater Superoleophobicity

Abstract

Because of the frequent oil spill accidents in marine environment, stable superoleophobic coatings under seawater are highly desired. Current underwater superoleophobic surfaces often suffer from mechanical damages and lose their superoleophobicity gradually. It remains a challenge to fabricate a stable and robust underwater superoleophobic film which can endure harsh conditions in practical application. Nacre is one of most extensively studied rigid biological materials. Inspired by the outstanding mechanical property of seashell nacre and those underwater superoleophobic surfaces from nature, we fabricated a polyelectrolyte/clay hybrid film <i>via</i> typical layer-by-layer (LBL) method based on building blocks with high surface energy. ‘Bricks-and-mortar’ structure of seashell nacre was conceptually replicated into the prepared film, which endows the obtained film with excellent mechanical property and great abrasion resistance. In addtion, the prepared film also exhibits stable underwater superoleophobicity, low oil adhesion, and outstanding environment durability in artificial seawater. We anticipate that this work will provide a new method to design underwater low-oil-adhesion film with excellent mechanical property and improved stability, which may advance the practical applications in marine antifouling and microfluidic devices

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.