Chalcogenol Ligand Toolbox for CdSe Nanocrystals and Their Influence on Exciton Relaxation Pathways

Abstract

We have employed a simple modular approach to install small chalcogenol ligands on the surface of CdSe nanocrystals. This versatile modification strategy provides access to thiol, selenol, and tellurol ligand sets <i>via</i> the <i>in situ</i> reduction of R<sub>2</sub>E<sub>2</sub> (R = <sup><i>t</i></sup>Bu, Bn, Ph; E = S, Se, Te) by diphenylphosphine (Ph<sub>2</sub>PH). The ligand exchange chemistry was analyzed by solution NMR spectroscopy, which reveals that reduction of the R<sub>2</sub>E<sub>2</sub> precursors by Ph<sub>2</sub>PH directly yields active chalcogenol ligands that subsequently bind to the surface of the CdSe nanocrystals. Thermogravimetric analysis, FT-IR spectroscopy, and energy dispersive X-ray spectroscopy provide further evidence for chalcogenol addition to the CdSe surface with a concomitant reduction in overall organic content from the displacement of native ligands. Time-resolved and low temperature photoluminescence measurements showed that all of the phenylchalcogenol ligands rapidly quench the photoluminescence by hole localization onto the ligand. Selenol and tellurol ligands exhibit a larger driving force for hole transfer than thiol ligands and therefore quench the photoluminescence more efficiently. The hole transfer process could lead to engineering long-lived, partially separated excited states

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.