Elucidation of hydrogen-release mechanism from methylamine in the presence of borane, alane, diborane, dialane, and borane–alane

Abstract

<div><p>The mechanisms of hydrogen release from methylamine with or without borane, alane, diborane, dialane, and borane–alane are theoretically explored. Geometries of stationary points are optimised at the MP2/aug-cc-pVDZ level and energy profiles are refined at the CCSD(T)/aug-cc-pVTZ level based on the second-order Møller–Plesset (MP2) optimised geometries. H<sub>2</sub> elimination is impossible from the unimolecular CH<sub>3</sub>NH<sub>2</sub> because of a high energy barrier. The results show that all catalysts can facilitate H<sub>2</sub> loss from CH<sub>3</sub>NH<sub>2</sub>. However, borane or alane has no real catalytic effect because the H<sub>2</sub> release is not preferred as compared with the B–N or Al–N bond cleavage once a corresponding adduct is formed. The diborane, dialane, and borane–alane will lead to a substantial reduction of energy barrier as a bifunctional catalyst. The similar and distinct points among various catalysts are compared. Hydrogen bond and six-membered ring formation are two crucial factors to decrease the energy barriers.</p></div

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.