4,180 research outputs found

    Role of Li_2B_(12)H_(12) for the Formation and Decomposition of LiBH_4

    Get PDF
    By in situ X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) spectroscopy, the role of Li_2B_(12)H_(12) for the sorption of LiBH_4 is analyzed. We demonstrate that Li_2B_(12)H_(12) and an amorphous Li_2B_(10)H_(10) phase are formed by the reaction of LiBH_4 with diborane (B_2H_6) at 200 °C. Based on our present results, we propose that the Li -2B - (12)H_(12) formation in the desorption of LiBH_4 can be explained as a result of reaction of diborane and LiBH_4. This reaction of the borohydride with diborane may also be observed for other borohydrides, where B_(12)H_(12) phases are found during decomposition

    Photolysis of Diborane at 1849 Å

    Get PDF
    The photolysis of diborane at 1849 Å has been studied in a specially constructed, internal‐type mercury‐vapor lamp. The products have been found to be H_2, B_(4)H_(10), B_(5)H_(11), and, at low pressures, a —BH— polymer. Reaction orders at 4°C have been obtained from linear plots of reaction products vs time for a range of diborane pressures from 0.08 to 80 cm, and at two light intensities. Linear relations between products and time existed only at very low conversions (∼1%), which required the development of a low‐temperature separation method for manipulating and analyzing the traces of B_(4)H_(10) and B_(5)H_(11). Because of the reactivity of these compounds, a detailed conditioning procedure was employed for the glass system. A mechanism consistant with the kinetic data and suggested by the kinetic results of thermal and photosensitized decomposition of diborane is postulated: the B_(5)H_(11) is assumed to be formed from a dissociation of B_(2)H_6 into BH_3's, the latter arising from an excited molecule. The B_(4)H_(10) and polymer are assumed to be formed from a dissociation of B_(2)H_6 into B_(2)H_5 and H, followed by radical recombination. There is a significant difference between the kinetics of thermal and photochemical B_(5)H_(11) formation, a result which may be due to the considerable energy excess of the 1849 quantum over that needed for dissociation (∼125‐kcal excess). These kinetic results raise a number of interesting questions, questions which can only be resolved through further investigations of effects due to light intensity, added inert gases, and temperature. The primary quantum yield of the step forming B_(2)H_5 and H is about 10 times higher than that of the one forming BH_3's. A rather rough estimate suggests that the former is of the order of magnitude of unity

    Structural and optical properties of compensated microcrystalline silicon films

    Get PDF
    Boron-doped microcrystalline silicon films were deposited in a plasma enhanced chemical vapor deposition (PECVD) system using silane (SiH4) diluted in hydrogen, and diborane (B2H6) as a dopant gas. The effects of the Boron concentration on the optical and structural properties were investigated by the constant-photocurrent method (CPM) and atomic force microscopy (AFM) measurements. The variations in the optical constants (refractive index, absorption coefficient and optical gap) as a function of wavelength were carried out from the optical transmission and CPM spectra. By increasing the doping level, a systematic increase in the absorption coefficient spectra in the low-energy region between 0.7 - 1.2 eV was observed. It was found that the increase of Boron concentration in the samples results in changes of the grain size. Correlations between optical properties and the density of states (DOS) were also studied.Fil: Dussan, A.. Universidad Nacional de Colombia; ColombiaFil: Koropecki, Roberto Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Arce, Roberto Delio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Schmidt, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentin

    Study of aluminoborane compound AlB_4H_(11) for hydrogen storage

    Get PDF
    Aluminoborane compounds AlB_4H_(11), AlB_5H_(12), and AlB_6H_(13) were reported by Himpsl and Bond in 1981, but they have eluded the attention of the worldwide hydrogen storage research community for more than a quarter of a century. These aluminoborane compounds have very attractive properties for hydrogen storage: high hydrogen capacity (i.e., 13.5, 12.9, and 12.4 wt % H, respectively) and attractive hydrogen desorption temperature (i.e., AlB_4H_(11) decomposes at ~125 °C). We have synthesized AlB_4H_(11) and studied its thermal desorption behavior using temperature-programmed desorption with mass spectrometry, gas volumetric (Sieverts) measurement, infrared (IR) spectroscopy, and solid state nuclear magnetic resonance (NMR). Rehydrogenation of hydrogen-desorbed products was performed and encouraging evidence of at least partial reversibility for hydrogenation at relatively mild conditions is observed. Our chemical analysis indicates that the formula for the compound is closer to AlB_4H_(12) than AlB_4H_(11)

    Safe transport of diborane in a dual refrigerant system: A concept

    Get PDF
    Mobile transport system, that can be carried by truck and parked in storage area, consists of an inner container capable of holding 363 kg of diborane and an external, dual refrigeration unit which uses liquid nitrogen and Freon-14

    Dopant gas effect on silicon chemical vapor depositions: A surface potential model

    Get PDF
    A surface potential model is proposed to consistently explain the known dopant gas effects on silicon chemical vapor deposition. This model predicts that the effects of the same dopant gases on the diamond deposition rate using methane and carbon tetrachloride should be opposite and similar to those of silane, respectively. Available data are in agreement with this prediction

    Physical properties of liquid oxygen difluoride and liquid diborane - A critical review updated

    Get PDF
    Physical properties of liquid oxygen difluoride and liquid diboran

    Oxygen difluoride/diborane technology vacuum ignition, phase 2 Quarterly report, 15 Jul. - 14 Oct. 1969

    Get PDF
    Vacuum ignition characteristics of rocket engine using oxygen difluoride-diborane propellan
    corecore