Abstract

Graphene-like two-dimensional (2D) nanostructures have attracted significant attention because of their unique quantum confinement effect at the 2D limit. Multilayer nanosheets of GaS–GaSe alloy are found to have a band gap (<i>E</i><sub>g</sub>) of 2.0–2.5 eV that linearly tunes the emission in red-to-green. However, the epitaxial growth of monolayers produces a drastic increase in this <i>E</i><sub>g</sub> to 3.3–3.4 eV, which blue-shifts the emission to the UV region. First-principles calculations predict that the <i>E</i><sub>g</sub> of these GaS and GaSe monolayers should be 3.325 and 3.001 eV, respectively. As the number of layers is increased to three, both the direct/indirect <i>E</i><sub>g</sub> decrease significantly; the indirect <i>E</i><sub>g</sub> approaches that of the multilayers. Oxygen adsorption can cause the direct/indirect <i>E</i><sub>g</sub> of GaS to converge, resulting in monolayers with a strong emission. This wide <i>E</i><sub>g</sub> tuning over the visible-to-UV range could provide an insight for the realization of full-colored flexible and transparent light emitters and displays

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.