Effects of relative humidity and particle and surface properties on particle resuspension rates

Abstract

<p>Wind tunnel experiments examined the coupled effects of relative humidity (RH) and surface and particle properties on aerodynamically induced resuspension. Hydrophilic glass spheres and hydrophobic polyethylene spheres ∼20 μm in diameter, with nanoscale surface features, were resuspended from hydrophilic glass, hydrophobic chemical agent resistant coating (CARC), and gold surfaces. Roughness of the glass and gold surfaces was on the nanoscale, whereas CARC surfaces had microscale roughness. Different particle–surface combinations yielded van der Waals interactions that varied by a factor of 4, but these differences had a relatively minor effect on resuspension. Wind tunnel RH was varied between 7% and 78%. Overall, RH affected the resuspension of hydrophilic particles on hydrophilic surfaces most strongly and that of hydrophobic particles on hydrophobic surfaces the least. For each particle–surface combination there was a threshold RH value below which resuspension rates were essentially constant and in good agreement with a dimensionless model of particle resuspension.</p> <p>Copyright © 2016 American Association for Aerosol Research</p

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.