Chondrotinase ABC I thermal stability is enhanced by site-directed mutagenesis: a molecular dynamic simulations approach

Abstract

<p>Chondroitin sulfate proteoglycans (CSPGs) are potent inhibitors of growth in the adult central nervous system. Use of the enzyme chondroitinase ABC I (ChABC I) as a strategy to reduce CSPG inhibition in experimental models of spinal cord injury has led to observations of its remarkable capacity for repair. More importantly, ChABC therapy has been demonstrated to promote significant recovery of function to spinal injured animals. Despite this incomparable function of ChABC I, its clinical application has been limited because of its thermal instability as reported in the literature. In a recent study by Nazari-Robati et al., thermal stability of ChABC I was improved by protein engineering using site-directed mutagenesis method. Here, in this study, molecular dynamics simulations were used to take a closer look into the phenomenon leading to the experimentally observed thermal stability improvement followed by the corresponding site-directed mutagenesis. We concluded that the mutations induce local flexibility along with a re-conformation into the native structure which consequently increase the protein thermal stability.</p

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.