Bushehr University of Medical Sciences
Bushehr University of Medical Sciences RepositoryNot a member yet
7809 research outputs found
Sort by
Cloning of Metalloproteinase 17 Genes from Oriental Giant Jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae)
We previously demonstrated that Nemopilema nomurai jellyfish venom metalloproteinases (JVMPs) play a key role in the toxicities induced by N. nomurai venom (NnV), including dermotoxicity, cytotoxicity, and lethality. In this study, we identified two full-length JVMP cDNA and genomic DNA sequences: JVMP17-1 and JVMP17-2. The full-length cDNA of JVMP17-1 and 17-2 contains 1614 and 1578 nucleotides (nt) that encode 536 and 525 amino acids, respectively. Putative peptidoglycan (PG) binding, zinc-dependent metalloproteinase, and hemopexin domains were identified. BLAST analysis of JVMP17-1 showed 42, 41, 37, and 37% identity with Hydra vulgaris, Acropora digitifera, Megachile rotundata, and Apis mellifera venom metalloproteinases, respectively. JVMP17-2 shared 38 and 36% identity with H. vulgaris and A. digitifera, respectively. Alignment results of JVMP17-1 and 17-2 with other metalloproteinases suggest that the PG domain, the tissue inhibitor of metalloproteinase (TIMP)-binding surfaces, active sites, and metal (ion)-binding sites are highly conserved. The present study reports the gene cloning of metalloproteinase enzymes from jellyfish species for the first time. We hope these results can expand our knowledge of metalloproteinase components and their roles in the pathogenesis of jellyfish envenomation
Investigation of microplastic pollution in Torghabeh River sediments, northeast of Iran
Abstract
Rivers are the route of transfer of microplastics from upstream to downstream areas and seas. Microplastic tracing in river sediments can provide a better reflection of long-term microplastic pollution. This study aimed to investigate the occurrence and distribution of microplastic contamination in the Torghabeh River sediments in Khorasan Razavi (Iran). Sediment samples were collected from four sites along the river. Microplastic particles were classified according to type, shape, and color. The average microplastic concentration was 8 ± 2.82 particles per 100 g of dry sediments. Most of the microplastics detected in river sediments were in the form of filaments and fragments. A total of 32 polymers were identified and isolated from sediments. According to Raman spectroscopy results, polystyrene had the highest abundance compared to polyester, polyethylene, and other polymers. The predominant shape of the microplastics in the river sediment was filament and fragmented. It can be concluded that the areas that were exposed to human activity contained more microplastic contamination. The present investigation can also provide baseline information for the study of riverine ecosystems
Sharing of retracted COVID-19 articles: an altmetric study
Objective: This study examines the extent to which retracted articles pertaining to COVID-19 have been shared via social and mass media based on altmetric scores.
Methods: Seventy-one retracted articles related to COVID-19 were identified from relevant databases, of which thirty-nine had an Altmetric Attention Score obtained using the Altmetrics Bookmarklet. Data extracted from the articles include overall attention score and demographics of sharers (e.g., geographic location, professional affiliation).
Results: Retracted articles related to COVID-19 were shared tens of thousands of times to an audience of potentially hundreds of millions of readers and followers. Twitter was the largest medium for sharing these articles, and the United States was the country with the most sharers. While general members of the public were the largest proportion of sharers, researchers and professionals were not immune to sharing these articles on social media and on websites, blogs, or news media.
Conclusions: These findings have potential implications for better understanding the spread of misleading or false information perpetuated in retracted scholarly publications. They emphasize the importance of quality peer review and research ethics among journals and responsibility among individuals who wish to share research findings
Study of microplastics pollution in sediments and organisms in mangrove forests: A review
Microplastics (MP) are an emerging and lesser-known pollutant that has attracted the attention of researchers around the world in recent decades. Size of PM is smaller than 5 mm and can be entered in different ways into marine environments like mangrove forests and interfere with the health of the environment and organisms. The present study reviews 53 studies in the field of microplastics in different parts (sediments and organisms) of mangrove forests. About 26% of the 53 studies was published in 2020. In most studies, MP particles were categorized based on the shape, color, size, and polymer genus. The number of microplastics per kilogram of mangrove sediments has been reported as 1.22–6390. The effect of sediment texture on the frequency of microplastic particles and the relationship between sediment pH and MP abundance were also discussed. The fiber and bright color PMs were more common in living organisms (mollusks, crustaceans, and fish). The PM particles with different genus (polypropylene, polyethylene, polystyrene, and polyethylene terephthalate) were reported for sediment samples. In sediments with smaller sizes and lower pH, microplastics have been detected more frequently. It was reported that sediments and roots of mangrove forests act as livestock and retain microplastics for a long time. The highest concentration of MP in different parts of mangrove forests (sediment and organisms) has been reported for China. Few reports were observed on microplastics in water in mangrove forests. Also, the concentration of microplastics in sediments and organisms in mangrove forests exposed to fishing, coastal tourism, urban, and industrial wastewater was higher than those in pristine areas. It is necessary to conduct comprehensive studies to monitor, control, and evaluate the MP pollution in sediments and various organisms in mangrove forests worldwide
Enhanced synergistic antitumor effect of a DNA vaccine with anticancer cytokine, MDA-7/IL-24, and immune checkpoint blockade
MDA-7/IL-24 cytokine has shown potent antitumor properties in various types of cancer without exerting any significant toxicity on healthy cells. It has also been proved to encompass pro-immune Th1 cytokine-like behavior. Several E7 DNA vaccines have developed against human papillomavirus (HPV)-related cervical cancer. However, the restricted immunogenicity has limited their clinical applications individually. To address this deficiency, we investigated whether combining the E7 DNA vaccine with MDA-7/IL-24 as an adjuvant would elicit efficient antitumor responses in tumor-bearing mouse models. Next, we evaluated how suppression of immunosuppressive IL-10 cytokine would enhance the outcome of our candidate adjuvant vaccine.
Methods
For this purpose, tumor-bearing mice received either E7 DNA vaccine, MDA-7/IL-24 cytokine or combination of E7 vaccine with MDA-7/IL-24 adjuvant one week after tumor challenge and boosted two times with one-week interval. IL-10 blockade was performed by injection of anti-IL-10 mAb before each immunization. One week after the last immunization, mice were sacrificed and the treatment efficacy was evaluated through immunological and immunohistochemical analysis. Moreover, the condition of tumors was monitored every two days for six weeks intervals from week 2 on, and the tumor volume was measured and compared within different groups.
Results
A highly significant synergistic relationship was observed between the E7 DNA vaccine and the MDA-7/IL-24 cytokine against HPV-16+ cervical cancer models. An increase in proliferation of lymphocytes, cytotoxicity of CD8+ T cells, the level of Th1 cytokines (IFN-γ, TNF-α) and IL-4, the level of apoptotic markers (TRAIL and caspase-9), and a decrease in the level of immunosuppressive IL-10 cytokine, together with the control of tumor growth and the induction of tumor regression, all prove the efficacy of adjuvant E7&IL-24 vaccine when compared to their individual administration. Surprisingly, vaccination with the DNA E7&IL-24 significantly reduced the population of Regulatory T cells (Treg) in the spleen of immunized mice compared to sole administration and control groups. Moreover, IL-10 blockade enhanced the effect of the co-administration by eliciting higher levels of IFN-γ and caspase-9, reducing Il-10 secretion and provoking the regression of tumor size.
Conclusion
The synergy between the E7 DNA vaccine and MDA-7/IL-24 suggests that DNA vaccines’ low immunogenicity can be effectively addressed by coupling them with an immunoregulatory agent. Moreover, IL-10 blockade can be considered a complementary treatment to improve the outcome of conventional or novel cancer therapies
FDG-PET/CT of COVID-19 and Other Lung Infections
While not conventionally used as the first-line modality, [18F]-2-fluoro-2-deoxy-D-glucose (FDG) - positron emission tomography/computed tomography (PET/CT) can identify infection and inflammation both earlier and with higher sensitivity than anatomic imaging modalities [including chest X-ray (CXR), computed tomography (CT), and magnetic resonance imaging (MRI)]. The extent of inflammation and, conversely, recovery within the lungs, can be roughly quantified on FDG-PET/CT using maximum standardized uptake value (SUVmax) values. The Coronavirus disease 2019 (COVID-19) pandemic has highlighted the value of FDG-PET/CT in diagnosis, elucidation of acute pulmonary and extrapulmonary manifestations, and long-term follow up. Similarly, many other pulmonary infections such as previously documented coronaviruses, aspergillosis, blastomycosis, candidiasis, coccidioidomycosis, cryptococcosis, histoplasmosis, mucormycosis, and typical/atypical mycobacterial infections have all been identified and characterized using FDG-PET/CT imaging. The goal of this review is to summarize the actual and potential benefits of FDG-PET/CT in the imaging of COVID-19 and other lung infections. Further research is necessary to determine the best indications and clinical applications of FDG-PET/CT, improve its specificity, and ultimately ascertain how this modality can best be utilized in the diagnostic work up of infectious pathologies
Degradation of plastics associated with the COVID-19 pandemic
The ongoing COVID-19 pandemic has resulted in an unprecedented form of plastic pollution: personal protective equipment (PPE). Numerous studies have reported the occurrence of PPE in the marine environment. However, their degradation in the environment and consequences are poorly understood. Studies have reported that face masks, the most abundant type of PPE, are significant sources of microplastics due to their fibrous microstructure. The fibrous material (mostly consisting of polypropylene) exhibits physical changes in the environment, leading to its fracture and detachment of microfibers. Most studies have evaluated PPE degradation under controlled laboratory conditions. However, in situ degradation experiments, including the colonization of PPE, are largely lacking. Although ecotoxicological studies are largely lacking, the first attempts to understand the impact of MPs released from face masks showed various types of impacts, such as fertility and reproduction deficiencies in both aquatic and terrestrial organisms
Maternal aromatase inhibition via letrozole altered RFamide-related peptide-3 and gonadotropin-releasing hormone expression in pubertal female rats
Objective(s): Despite prevalence of polycystic ovary syndrome (PCOS) among childbearing women and development of many animal models for this syndrome, information on its etiology is still scarce. The intrauterine hyperandrogenic environment may underlie changes at the level of hypothalamus, pituitary, ovary organization in female offspring, and PCOS later in life. Letrozole has been shown to mimic reproductive and metabolic characteristics of PCOS in adult rodent models. Therefore, this research aimed to assess the condition in a prenatal letrozole-treated rat model.
Materials and Methods: Twenty-eight female rats dams receiving letrozole at certain doses during late pregnancy were used in the trial. Pregnant Sprague-Dawley rats (n=21) received letrozole treatment on gestation days 16–18 at doses of 1.25, 1.0, 0.75, 0.5, and 0.25 mg/kg body weight (BW).
Results: Prenatal letrozole treatment delayed parturition time and reduced the litter size in pregnant dams (P<0.0001). Late puberty onset, irregular ovarian cyclicity, increased anogenital distance (AGD), body weight gain, serum testosterone concentration, and reduced estradiol levels (P<0.0001) were observed in the female offspring of dams receiving 1.25 and 1 mg/kg BW letrozole. Furthermore, letrozole at 1.25 and 1 mg/kg BW showed increased RFRP and decreased GnRH mRNA expression (P<0.0001). Letrozole treatment at doses of 1 mg/kg BW and lower was not fetotoxic.
Conclusion: It was concluded that 1 mg/kg BW letrozole may be suggested for prenatal PCOS induction.
Keywords
Gonadotropin-releasing hormone Hypothalamus Letrozole Polycystic ovary syndrome Prenatal Rat RFamide-related peptide-
Effects of four herbs as a dietary on properties of egg and immune response against Newcastle and avian influenza vaccine in Japanese laying quail
This study shows the effectiveness of diet containing Trachyspermum copticum (TC), Majorana hortensis Minch (MH), Stachys lavandulifolia Vahl (SL), and Zingiber officinale (ZO) on the growth performance, biochemical factors, and qualitative agents of eggs of Japanese quail (Coturnix japonica) and their immune responses against Newcastle and Avian Influenza vaccine. For this prepose, 675 quails were divided into 9 groups with three replicates and fed with different treatment diets (basic diet with no supplements (control treatment diet) and diets supplemented with one of two levels (0.5 and 2%) of each plant powders). Data showed that the use of TC 2% increased the Haugh unit significantly (P < 0.05) compared with the control (P < 0.05). At the end of the experiment, shell weight (g) and shell thickness were also remarkably enhanced in treated groups compared with the control group. Moreover, the findings of this study showed the thiobarbituric acid and yolk cholesterol level reduced remarkably (P < 0.05) in the MH and SL groups without significant adverse effect on albumen protein (%) and total protein (%) level. In this study, TC-2%, ZO-2%, and SL-2% all increased the antibody titers against avian influenza. The use of a diet containing MH-2% increased Newcastle disease in Japanese quail in comparison to both controls and different levels of other medicinal herb powders. Based on these results, using these four herbal plant powders in Japanese quail, diets could positively affect their egg qualitative and biochemical factors
Evaluation of HIV-Related Cardiomyopathy in HIV-Positive Patients in Bushehr, Iran
Objectives
In 2020, according to the UNAIDS (Joint United Nations Programme on HIV/AIDS), more than 37 million people lived with human immunodeficiency virus (HIV) infection worldwide. The disease is known to affect several organs, and one of the most affected organs is the heart. Cardiac diseases are highly prevalent among HIV-infected individuals, and recent findings suggest that this could be due to the damage caused by the virus. HIV patients are subject to advanced immunosuppression, which may lead to cardiac muscle damage and, in turn, cardiomyopathy. We aimed to study the incidence of HIV-related cardiomyopathy