University of Cantabria

UCrea
Not a member yet
    36611 research outputs found

    Self-defense in the context of the crime of habitual mistreatment of article 173.2 of the penal code

    Get PDF
    Hoy en día, los casos de maltrato habitual representan una problemática social grave, y por ello este trabajo analiza la legítima defensa en el contexto del delito de maltrato habitual, regulado en el artículo 173.2 del Código Penal español. En este trabajo se aborda la naturaleza jurídica de este delito, diferenciando entre habitual y permanente, y las implicaciones de dicha distinción en la aplicación de la causa de justificación de la legítima defensa. Además, se estudian los requisitos de la legítima defensa, como son la agresión ilegítima, la necesidad racional del medio empleado y la falta de provocación suficiente, en el marco específico del maltrato habitual. Por último, este trabajo reflexiona sobre las implicaciones jurídicas de esta regulación, destacando la importancia de un análisis que considere las particularidades de los casos de maltrato habitual, así como el conocimiento de la víctima sobre situaciones de maltrato previas, para no dejar desprotegida a la mismaNowadays, cases of habitual abuse represent a serious social issue. For this reason, this paper analyzes self-defense within the context of habitual abuse, as regulated by Article 173.2 of the Spanish Penal Code. This study addresses the legal nature of this crime, distinguishing between habitual and permanent offenses, and the implications of this distinction for the application of the justification of self-defense. Furthermore, it examines the requirements of self-defense, such as unlawful aggression, the rational necessity of the means used, and the lack of sufficient provocation, within the specific context of habitual abuse. 4 Finally, this paper reflects on the legal implications of this regulation, highlighting the importance of an analysis that considers the specificities of cases of habitual abuse, as well as the victim's knowledge of previous abuse situations, in order to avoid leaving the victim unprotectedGrado en Derech

    Aprendizaje profundo para la segmentación de tumores cerebrales en imagen por resonancia magnética

    No full text
    The advancement of medical imaging techniques has significantly enhanced diagnostic capabilities, particularly in the context of brain tumor detection and analysis. This work presents a detailed study on the application of neural networks for the segmentation of brain tumors using the BraTS dataset. The research focuses on leveraging deep learning methodologies to achieve an accurate, efficient, and reliable model to carry out brain tumor segmentation in MRI scans. This work highlighted the limitations of traditional methods and the transformative potential of neural networks and proposed the development, training and evaluation of a 3D UNet model tailored to handle the complexities of brain tumor segmentation through key aspects as data preprocessing, model architecture, loss and activation functions and validation strategies. The model was evaluated on diverse training and validation datasets encompassing various tumor subregions and situations. Results demonstrated that the proposed model achieved a substantial segmentation accuracy, as evidenced by metrics such as HD95 and DSC as well as graphical evaluation. Validation across a diverse dataset confirmed the model’s robustness and capability to correctly segment 2D and 3D predicted masks. Furthermore, constraints imposed by limited computational resources impacted the ability for the fine-tuning of the model, showing very promising future opportunities for improvement.El avance de las técnicas en imagen médica ha mejorado significativamente las capacidades diagnósticas, particularmente en el contexto de la detección y análisis de tumores cerebrales. Este trabajo presenta un estudio detallado sobre la aplicación de redes neuronales para la segmentación de tumores cerebrales utilizando el conjunto de datos BraTS. La investigación se centra en aprovechar las metodologías de aprendizaje profundo para lograr un modelo preciso, eficiente y fiable que realice la segmentación de tumores cerebrales en resonancias magnéticas. Este trabajo destacó las limitaciones de los métodos tradicionales y el potencial transformador de las redes neuronales, proponiendo el desarrollo, entrenamiento y evaluación de un modelo 3D UNet adaptado para manejar las complejidades de la segmentación de tumores cerebrales a través de aspectos clave como el preprocesamiento de datos, la arquitectura del modelo, las funciones de pérdida y activación, y las estrategias de validación. El modelo fue evaluado en diversos conjuntos de datos de entrenamiento y validación, que abarcan diferentes subregiones tumorales y situaciones. Los resultados demostraron que el modelo propuesto alcanzó una precisión sustancial en la segmentación, como lo evidencian métricas tales como HD95 y DSC, así como una evaluación gráfica. La validación en un conjunto de datos diverso confirmó la robustez del modelo y su capacidad para segmentar correctamente máscaras predichas en 2D y 3D. Además, las limitaciones impuestas por los recursos computacionales restringidos impactaron en la capacidad para afinar el modelo, lo que muestra grandes oportunidades esperanzadoras de mejora.Grado en Físic

    Selective separation of La(III) and Ce(III) using hollow fiber membranes: influence of pH and extractant systems

    Get PDF
    The selective separation of adjacent rare earth elements (REEs), such as La(III) and Ce(III), is a critical challenge in hydrometallurgy due to their similar chemical properties. This work evaluates the performance of non-dispersive solvent extraction (NDSX) using hollow fiber (HF) membranes for this purpose. Initial solvent extraction (SX) equilibrium experiments with Cyanex® 272 in kerosene determined that the aqueous phase’s optimal pH for selectivity is 5.6, achieving a selectivity of αCe/La =12.7. NDSX experiments demonstrated enhanced selectivity αCe/La = 34 after 120 min, benefiting from the additional mass transfer resistance provided by the HF membrane. Maintaining a constant pH of 5.0 with NaOH improved extraction rates but slightly reduced selectivity to αCe/La = 26. Experiments using 1,1,1-trifluoro-2,4-pentanedione (HTFAC) in the ionic liquid (IL) [Omim][Tf2n] as the receiving phase showed lower extraction rates but achieved comparable selectivity values (αCe/La = 22) in just 20 min, thanks to the IL’s viscosity limiting La(III) extraction. The impact of HF membrane design was also assessed; increasing the membrane’s surface area significantly improved extraction rates but reduced selectivity due to reduced mass transfer resistance. These results demonstrate the potential of NDSX systems for selective REE separation, particularly by leveraging controlled mass transfer and operating conditions. However, further work is needed to optimize system design. The findings highlight the advantages of NDSX over traditional SX, offering a promising pathway for sustainable and efficient REE processing.This research was funded by the Project Fondecyt 1211234 from the National Agency for Research and Development (ANID) and Dicyt 051911QM_PAP from the University of Santiago de Chile. Felipe Olea thanks the National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL/2019—21191785

    Effects of a specific tax on sweetened beverages: an industrial economy approach

    Get PDF
    Muchas personas no son conscientes de los problemas que generan en su salud un consumo excesivo de bebidas con alto contenido en azúcar. Comenzar a padecer obesidad, diabetes tipo 2 o algún problema cardiovascular, son algunos de los problemas que causan en las personas el consumo habitual de este grupo de bebidas. En países como México, Francia o Chile ya se han llevado a cabo, con éxito, políticas públicas con el fin de reducir el consumo de las bebidas con alto contenido en azúcar. Este trabajo pretende ver los efectos de un impuesto al consumo en el sector de bebidas azucaradas en España. A partir de la facturación de las principales empresas de este sector en España, hemos supuesto la existencia de un mercado oligopolista, con una empresa líder que presenta una elevada cuota de mercado y varias empresas seguidoras. Tras desarrollar los modelos teóricos de Cournot y de Stackelberg para evaluar en cuál de los dos modelos el impuesto tiene un mayor impacto, se ha obtenido que, dado el tipo de mercado y sus características, el modelo de Stackelberg ofrece mejores resultados. Así, si los consumidores ven reducidas sus posibilidades de compra, es probable que opten por dejar de invertir en ese tipo de bebidas con alto contenido en azúcar y reduzcan su consumoMany people are unaware of the health problems caused by excessive consumption of high-sugar beverages. Developing obesity, type 2 diabetes, or cardiovascular issues are some of the health risk associated with the regular consumption of this type of drink. In countries such as Mexico, France and Chile, public policies have already been successfully implemented to reduce the consumption of high-sugar beverages.This study aims to analyze the effects of a consumption tax on the sugary drinks sector in Spain. Based on the revenue of the leading companies in this sector in the country, we have assumed the existence of an oligopolistic market, with leading company holding a high market share and several follower companies. After developing the theoretical models of Cournot and Stackelberg to evalue in which of the two models the tax has a greater impact, it has been determinated that, given the market type and its characteristics, the Stackelberg model yields better results. Thus, if consumers see their purchasing options reduced, they are likely to stop investing in this type of high-sugar beverages and decrease their consumptionGrado en Economí

    Low nickel loading carbon microfibers fabricated by electrospinning for the glycerol electrooxidation coupled with the continuous gas-phase CO2 reduction reaction towards formate

    Get PDF
    The glycerol market is currently experiencing a surplus due to increased biodiesel production,mcreating a demand for innovative approaches for its optimal utilization. Electrochemical valorization, particularly electro-oxidation, emerges as a promising solution for transforming excess glycerol into valuable products. Here, we report the use of carbon microfibers with ultralow nickel content (<5 wt %) to catalyze glycerol oxidation reaction (GOR), coupled with continuous gas-phase CO2 electroreduction to obtain formate. The humidified CO2-fed membrane electrode assembly electrolyzer, devoid of noble metals, efficiently produces oxidized products like lactate at concentrations of 0.144 g L-1 from glycerol and formate solutions reaching up to 100 g L-1 from CO2, surpassing previous methods employing commercial Pt-based materials. This novel approach not only enhances glycerol conversion efficiency but also contributes to sustainable carbon utilization, leading to the production of value added products.The authors gratefully acknowledge financial support through projects PID2019-108136RB-C31 (MCIN/AEI/10.13039/501100011033), PID2022-138491OB-C31 (MICIU/AEI/10.13039/501100011033 and ERDF/EU), TED2021–129810B-C21 (MCIN/AEI/10.13039/501100011033 and European Union Next Generation EU/PRTR), PLEC2022-009398 (MCIN/AEI/10.13039/501100011033 and European Union Next Generation EU/PRTR), PCI2024-155027-2 (MICIU/AEI/10.13039/501100011033/UE) and the “Complementary Plan in the area of Energy and Renewable Hydrogen” funded by Autonomous Community of Cantabria, Spain, and the European Union Next Generation EU/PRTR. The present work is related to CAPTUS Project. This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101118265. We are also grateful for the Bi carbon-supported nanoparticles prepared and provided by the group of Prof. V. Montiel and Dr. José Solla-Gullón from the Institute of Electrochemistry of the University of Alicante

    An NMR study of hydrofluorocarbon mixed-gas solubility and self-diffusivity in the ionic liquid 1-ethyl-3-methylimidazolium dicyanamide

    Get PDF
    To date, the design of advanced separation processes, such as the extractive distillation with ionic liquids (ILs), for the separation of common close-boiling refrigerant blends relies almost exclusively on binary equilibrium data obtained for single-gas/solvent systems, thus neglecting the influence of possible mixture effects. In this work, Nuclear Magnetic Resonance (NMR) spectroscopy and pulsed gradient spin echo (PGSE) NMR are pro posed for the sequential assessment of the single and mixed-gas vapor-liquid equilibrium and self-diffusivity of two fluorinated refrigerants, difluoromethane (R-32) and pentafluoroethane (R-125), in the IL 1-ethyl-3-methy imidazolium dicyanamide at 303.1 K and pressures up to 4 bar, either as pure R-32 or using the commercial refrigerant blend R-410A. The results confirmed that the mixed-gas solubility and self-diffusivities were essen tially equal to those obtained with pure feed gas, thus significant mixing effects were not observed for this particular system. However, an increase in the self-diffusion coefficients was observed with the concentration of absorbed gas, which was more significant for the smallest hydrofluorocarbon (R-32) than for R-125. This technique also allowed evaluating the mobility of the IL moieties, which was slightly higher for the IL anion. Moreover, the self-diffusion coefficients of the IL ions also increased with the amount of gas absorbed, yet less markedly than for the refrigerants. Overall, the NMR technique proved to be an accurate method for the rapid screening of possible mixture effects in equilibrium and transport properties of refrigerant and IL systems, thus providing essential information for designing novel advanced separation processes.The authors acknowledge the financial support of MICIU/AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR to projects TED2021-129844B-I00 and PID2022-138028OB-I00 (Universidad de Cantabria), and project PID2019-108552GB-I00 (ICTP-CSIC) as well as project LIFE4F-Gases (LIFE20CCM/ES/001748) co-funded by the European Union LIFE programme. F. Pardo thanks the postdoctoral fellowship IJC2020–043134-I “Juan de la Cierva Incorporación”. M. Viar acknowledges the FPU grant (FPU22/04137) awarded by the Spanish Ministry of Education and Professional Training

    Decomposition of differences in distribution under sample selection and the gender wage gap

    Get PDF
    I address the decomposition of the differences between the distribution of outcomes of two groups when individuals self-select themselves into participation. I differentiate between the decomposition for participants and the entire population, highlighting how the primitive components of the model affect each of the distributions of outcomes. Additionally, I introduce two ancillary decompositions that help uncover the sources of differences in the distribution of unobservables and participation between the two groups. The estimation is done using existing quantile regression methods, for which I show how to perform uniformly valid inference. I illustrate these methods by revisiting the gender wage gap, finding that changes in female participation and self-selection have been the main drivers for reducing the gap.This work is part of the I + D+i project Ref. TED2021-131763A-I00 financed by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR. I gratefully acknowledge financial support from the Spanish Ministry of Universities and the European Union-NextGenerationEU (RMZ-18)

    Monitorizado del proceso de trefilado mediante adquisición de imágenes y uso de redes neuronales

    Get PDF
    Este Trabajo de Fin de Grado (TFG) se centra en la monitorización del proceso de trefilado mediante la adquisición de imágenes y su posterior procesamiento utilizando una red neuronal convolucional, específicamente ResNet50, implementada en MATLAB. El objetivo principal es identificar y clasificar imágenes del proceso de trefilado, diferenciando aquellas con defectos de las que no presentan anomalías, así como identificar el tipo de defecto que aparecen en las imágenes. Para llevar a cabo este estudio, se capturaron imágenes de muestras de cables obtenidos mediante el proceso de trefilado. Las imágenes fueron etiquetadas manualmente para entrenar y evaluar la red neuronal. Se utilizó la red neuronal ResNet50, con el objetivo de encontrar la solución óptima. El modelo fue entrenado y ajustado en MATLAB, empleando un conjunto de datos balanceado para evitar sesgos en la clasificación. Los resultados muestran una precisión equilibrada del 98.1% en la detección de defectos y un 98.11% en la clasificación de los mismos, destacando la efectividad de ResNet50 para este tipo de aplicaciones industriales. Además, se discuten las limitaciones del estudio y se proponen mejoras futuras, como la utilización de técnicas de aumento de datos y el empleo de cámaras de mayor resolución. En conclusión, la implementación de un sistema de monitorización basado en la adquisición de imágenes y el procesamiento mediante redes neuronales se presenta como una solución viable y efectiva para la identificación y clasificación de defectos en el proceso de trefilado.This Final Degree Project (TFG) focuses on monitoring the wire drawing process through image acquisition and subsequent processing using a convolutional neural network, specifically ResNet50, implemented in MATLAB. The main objective is to identify and classify images from the wire drawing process, distinguishing those with defects from those without anomalies, as well as identifying the type of defect present in the images. For this study, images of wire samples obtained through the wire drawing process were captured. The images were manually labeled to train and evaluate the neural network. The ResNet50 neural network was used with the goal of finding the optimal solution. The model was trained and fine-tuned in MATLAB, using a balanced dataset to avoid biases in classification. The results show a balanced accuracy of 98.1% in defect detection and 98.11% in defect classification, highlighting the effectiveness of ResNet50 for this type of industrial application. Additionally, the study's limitations are discussed, and future improvements are proposed, such as the use of data augmentation techniques and higher-resolution cameras. In conclusion, the implementation of a monitoring system based on image acquisition and processing using neural networks is presented as a viable and effective solution for defect identification and classification in the wire drawing process.Grado en Ingeniería Mecánic

    The Directive (EU) 2024/1760 on due diligence directive and decent work: special reference to migrations and child labour in value chains

    Get PDF
    A raíz de la aprobación de la Directiva (UE) 2024/1760 sobre diligencia debida a las empresas, nos acercamos a un intento europeo de hacer efectiva esa asunción de una mayor responsabilidad social por parte de las empresas que deberán observar el respeto a los derechos humanos en todos los estadios de la cadena de actividades. Así una empresa ubicada en España, con proveedores en diferentes partes del planeta donde las regulaciones o mecanismos de control nacionales no ofrezcan una efectiva protección a los trabajadores o donde se constate que existe trabajo forzoso, trabajo infantil o cualquiera de las variedades de esclavitud, deberá actuar rápidamente al respecto. En este espacio se tratará de reflexionar sobre la necesidad de regularización de la actividad empresarial y de la implementación de leyes laborales sólidas a partir del mandato normativo de la Directiva Europea.Following the approval of Directive (EU) 2024/1760 on corporate due diligence, we are approaching a European attempt to make effective this assumption of greater social responsibility by companies that must observe respect for human rights at all stages of the chain of activities. Thus a company located in Spain, with suppliers in different parts of the planet where national regulations or control mechanisms do not offer effective protection to workers or where it is found that forced labour, child labour or any variety of slavery exist, must act quickly in this regard. This space will try to reflect on the need to regularize business activity and implement solid labour laws based on the mandate of the European Directive

    Assessment of dynamic surface leaching of asphalt mixtures incorporating electric arc furnace steel slag as aggregate for sustainable road construction

    Get PDF
    This study evaluated the environmental sustainability of partially replacing natural aggregates with electric arc furnace (EAF) slag in concrete and porous asphalt mixtures. Both the Equilibrium Leaching Test (EN 12457-4) and the Dynamic Surface Leaching Test (DSLT, CEN/TS 16637-2) were applied to analyse the leaching behaviour of the asphalt mixtures. The results showed that the incorporation of EAF slag led to the release of chromium (Cr), molybdenum (Mo), and vanadium (V), while the type of bitumen affected the dissolved organic carbon (DOC) release. However, when compared to EAF slag leaching, asphalt mixtures exhibited significantly reduced leaching, particularly Cr (by 70%) and V (by 60%). These results indicate that metal leaching follows a diffusion-controlled release mechanism, showing higher concentrations for the porous asphalt compared to the asphalt concrete. The cumulative leaching values at 64 days reached 2.54 mg·m-2 for Cr, 3.29 mg·m-2 for Mo, and 28.67 mg·m-2 for V, far from the limits set by the Dutch Soil Quality Decree (SQD) of 120, 144, and 320 mg·m-2, respectively. Therefore, this study demonstrated that EAF slag is a viable alternative for sustainable road construction, reducing natural resource consumption and promoting the circular economy.This study was financially supported by the grants RTC-2017-6693-5 and RTI 2018-097612-B-C22, funded by MCIN/AEI/10.13039/501100011033 and by ERDF “A way of making Europe”

    24,473

    full texts

    36,614

    metadata records
    Updated in last 30 days.
    UCrea is based in Spain
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇