Multidisciplinary Digital Publishing Institute (Switzerland)
Multidisciplinary Digital Publishing InstituteNot a member yet
1731452 research outputs found
Sort by
1D-CNN-Based Performance Prediction in IRS-Enabled IoT Networks for 6G Autonomous Vehicle Applications
To foster the performance of wireless communication while saving energy, the integration of Intelligent Reflecting Surfaces (IRS) into autonomous vehicle (AV) communication networks is considered a powerful technique. This paper proposes a novel IRS-assisted vehicular communication model that combines Lagrange optimization and Gradient-Based Phase Optimization to determine the optimal transmission power, optimal interference transmission power, and IRS phase shifts. Additionally, the proposed model help increase the Signal-to-Interference-plus-Noise Ratio (SINR) by utilizing IRS, which leads to maximizes energy efficiency and the achievable data rate under a variety of environmental conditions, while guaranteeing that resource limits are satisfied. In order to represent dense vehicular environments, practical constraints for the system model, such as IRS reflection efficiency and interference, have been incorporated from multiple sources, namely, Device-to-Device (D2D), Vehicle-to-Vehicle (V2V), Vehicle-to-Base Station (V2B), and Cellular User Equipment (CUE). A Lagrangian optimization approach has been implemented to determine the required transmission interference power and the best IRS phase designs in order to enhance the system performance. Consequently, a one-dimensional convolutional neural network has been implemented for the optimized data provided by this framework as training input. This deep learning algorithm learns to predict the required optimal IRS settings quickly, allowing for real-time adaptation in dynamic wireless environments. The obtained results from the simulation show that the combined optimization and prediction strategy considerably enhances the system reliability and energy efficiency over baseline techniques. This study lays a solid foundation for implementing IRS-assisted AV networks in real-world settings, hence facilitating the development of next-generation vehicular communication systems that are both performance-driven and energy-efficient
Enhancing Soilless Production of Portulaca oleracea, Mesembryanthemum crystallinum and Valerianella locusta Through Nitrogen Form Ratio Optimization and Biostimulant Application
Underutilized leafy greens are considered as functional plant species primarily due to their resilience to abiotic stress factors, low nutrient requirements, and high nutritional value. Over the past 30 years, many experiments have been conducted to identify nutrient-efficient species, cultivars, landraces, and ecotypes, but few have successfully entered mainstream agriculture. The integration of these species into advanced horticultural systems, such as hydroponics, has the potential to further strengthen their impact on sustainable agriculture by minimizing use of resources, enabling year-round cultivation, and improving the nutritional profile of the harvested produce. As leafy vegetables, a primary food safety concern is the accumulation of nitrates in the leaves. In hydroponics, this issue is usually addressed by balancing the NH4-N/total-N ratio (Nr) in the nutrient solution. Provided that the plant responses to high ammonia supply are species-dependent, three wild leafy greens, iceplant, corn salad, and common purslane, were grown in a soilless culture, with perlite as the substrate, under low (0.04) and high (0.12) Nr on a molar basis. Additionally, the potential of protein hydrolysates (PH) and seaweed extracts (SW) to alleviate plant tolerance to excess ammonia supply was also investigated. In terms of yield, high Nr led to significant yield restrictions in iceplant that reached 28%, while on corn salad, it had a positive impact, with yield increasing by 18%. Both biostimulant applications enhanced iceplant productivity only under optimal Nr conditions (0.04). Apart from yield responses, biofertilizers had no substantial impact on the plant nutrient profile. In contrast, high Nr suppressed nitrate accumulation in fresh leaves, while enhancing micronutrient uptake in all three plant species. In conclusion, this study highlights the pivotal role of biostimulants as plant stress protectors and growth regulators and identifies the optimal Nr ratio for maximizing the yield and quality performance of corn salad, iceplant, and common purslane in soilless cultivation systems
Techno-Economic Analysis and Assessment of an Innovative Solar Hybrid Photovoltaic Thermal Collector for Transient Net Zero Emissions
Achieving net-zero emissions in arid and high-solar-yield regions demands innovative, cost-effective, and scalable energy technologies. This study conducts a comprehensive techno-economic analysis and assessment of a novel hybrid photovoltaic–thermal solar collector (U.S. Patent No. 11,431,289) that integrates a reverse flat plate collector and mini-concentrating solar thermal elements. The system was tested in Qatar and Germany and simulated via a System Advising Model tool with typical meteorological year data. The system demonstrated a combined efficiency exceeding 90%, delivering both electricity and thermal energy at temperatures up to 170 °C and pressures up to 10 bars. Compared to conventional photovoltaic–thermal systems capped below 80 °C, the system achieves a heat-to-power ratio of 6:1, offering an exceptional exergy performance and broader industrial applications. A comparative financial analysis of 120 MW utility-scale configurations shows that the PVT + ORC option yields a Levelized Cost of Energy of 82.8/MWh) and PV + BESS ($132.3/MWh). In addition, the capital expenditure is reduced by over 50%, and the system requires 40–60% less land, offering a transformative solution for off-grid data centers, water desalination (producing up to 300,000 m3/day using MED), district cooling, and industrial process heat. The energy payback time is shortened to less than 4.5 years, with lifecycle CO2 savings of up to 1.8 tons/MWh. Additionally, the integration with Organic Rankine Cycle (ORC) systems ensures 24/7 dispatchable power without reliance on batteries or molten salt. Positioned as a next-generation solar platform, the Hassabou system presents a climate-resilient, modular, and economical alternative to current hybrid solar technologies. This work advances the deployment readiness of integrated solar-thermal technologies aligned with national decarbonization strategies across MENA and Sub-Saharan Africa, addressing urgent needs for energy security, water access, and industrial decarbonization
Hepatitis E Virus Infection in Brazil: A Scoping Review of Epidemiological Features
Introduction: Although Brazil includes industrialized regions, such as the Southeast, it also has underdeveloped areas with poor sanitation, such as the North and Northeast, resembling regions in Africa and Asia where HEV is endemic. In Brazil, HEV is suspected to occur mainly as a zoonosis. Given the wide variation in HEV prevalence across the five regions, a scoping review was conducted to systematically evaluate its prevalence and circulating genotypes. Aim: To investigate the epidemiological characteristics of HEV in Brazil, including modes of transmission, by reviewing genotyping studies in humans and swine. Methods: This scoping review followed the methodological framework of the Joanna Briggs Institute (JBI) and the PRISMA-ScR checklist. Gray literature was retrieved from Google Scholar, the Brazilian Digital Library of Theses and Dissertations, and the Thesis and Dissertation Catalog of the Coordination for the Improvement of Higher Education Personnel. Searches were performed in June and July 2025 in MEDLINE and LILACS. The evidence on HEV epidemiology in Brazil was mapped using the Population, Concept, and Context strategy. Results: Among 57 studies on HEV prevalence in Brazil, 45 (78.9%) involved humans and 12 (21.1%) involved swine. IgG prevalence ranged from 0.5% in the North to 59.4% in the South. IgM prevalence was lowest in the Northeast (0.1%) and highest in the North (16.3%). In swine, HEV was detected in all regions, with variation in sample types, husbandry practices, and prevalence. Genotyping revealed exclusively HEV-3 in all regions where analysis was performed. Conclusions: HEV infection is present throughout Brazil, with higher prevalence in the South and Southeast. The circulating genotype is HEV-3, and transmission is likely linked to swine breeding and consumption
Beyond Killing: The Overlooked Contribution of Neutrophils to Tissue Repair
Neutrophils are the most abundant immune cells in humans and the first responders to be recruited at the site of injury. They exhibit high microbicidal activity and a combination of cytotoxic mechanisms that may lead to bystander tissue damage. However, this classical and simplistic view of the neutrophil biology has recently dramatically changed. Emerging evidence indicates an active role for neutrophils in resolution of inflammation and tissue repair. This review specifically explores the mechanisms through which neutrophils perform their anti-inflammatory and tissue-repairing roles, which are also modulated by circadian rhythms—an aspect that influences immune activity and may have implications for treatment timing. A particular focus is placed on the role of platelet-derived products in modulating local neutrophil immune responses. The remarkable phenotypic plasticity of neutrophils and their crucial role in resolving inflammation and restoring homeostasis underscore their promise as a therapeutic approach. However, their activity must be finely regulated to prevent potential tissue damage
Identification and Functional Speculation of Genes Related to Sex Pheromone Synthesis Expressed in the Gonads of Female Gynaephora qinghaiensis (Lepidoptera: Lymantriidae)
Background: Grassland desertification has garnered significant attention as a pressing issue. Among the key pests affecting plateau meadows, the Gynaephora qinghaiensis (Lepidoptera: Lymantriidae) poses a substantial threat in the Qinghai-Tibet Plateau region, highlighting the urgent need for effective, environmentally friendly control strategies. Insect sex pheromones are increasingly employed in pest monitoring and management. Methods: This study aims to identify and analyze genes associated with sex pheromone synthesis in grassland caterpillars through transcriptome sequencing and tissue-specific expression analysis. Results: A total of 139,599 transcripts and 56,403 Unigenes were obtained from the sex pheromone glands transcriptome database. A total of 31 genes related to sex pheromone synthesis were identified, including 1 ACC, 8 DES, 6 AR, 7 FAR, 5 FAS, and 4 ACT genes. The expression levels of these genes varied significantly across different tissues in both male and female caterpillars (p < 0.05). GqinACC1, GqinDES1, GqinDES4, GqinDES8, GqinAR3, GqinFAR6, GqinACT2, and GqinACT3 exhibited significantly higher expression levels in the female gonads compared to other tissues (p < 0.01). Conclusions: We hypothesize that specific genes play specific roles in the pheromone synthesis pathways of pests, Key genes were identified based on expression patterns for subsequent functional studies. The results of this study offer valuable data support for subsequent investigations into the mechanisms underlying sex pheromone synthesis in G. qinghaiensis. Additionally, these findings may identify potential targets for future research on genes associated with pheromone biosynthesis, which could disrupt their chemical communication and contribute to grassland conservation efforts
Memory-Augmented Large Language Model for Enhanced Chatbot Services in University Learning Management Systems
A learning management system (LMS) plays a crucial role in supporting students’ educational activities by centralized platforms for course delivery, communication, and student support. Recently, many universities have integrated chatbots into their LMS to assist students with various inquiries and tasks. However, existing chatbots often necessitate human interventions to manually respond to complex queries, resulting in limited scalability and efficiency. In this paper, we present a memory-augmented large language model (LLM) framework that enhances the reasoning and contextual continuity of LMS-based chatbots. The proposed framework first embeds user queries and retrieves semantically relevant entries from various LMS resources, including instructional documents and academic frequently asked questions. Retrieved entries are then filtered through a two-stage confidence filtering process that combines similarity thresholds and LLM-based semantic validation. Validated information, along with user queries, is processed by LLM for response generation. To maintain coherence in multi-turn interactions, the chatbot incorporates short-term, long-term, and temporal event memories, which track conversational flow and personalize responses based on user-specific information, such as recent activity history and individual preferences. To evaluate response quality, we employed a multi-layered evaluation strategy combining BERTScore-based quantitative measurement, an LLM-as-a-Judge approach for automated semantic assessment, and a user study under multi-turn scenarios. The evaluation results consistently confirm that the proposed framework improves the consistency, clarity, and usefulness of the responses. These findings highlight the potential of memory-augmented LLMs for scalable and intelligent learning support within university environments
1,3-Dipolar Cycloaddition of Nitrile Imines and Nitrile Oxides to Exocyclic C=N Bonds—An Approach to Spiro-N-Heterocycles
Nitrile imines and nitrile oxides are capable of undergoing (3+2)-cycloaddition reactions at double and triple carbon–carbon, carbon-heteroatom, or heteroatom–heteroatom bonds of various dipolarophiles, forming five-membered heterocyclic compounds. When cyclic dipolarophiles bearing an exocyclic carbon–nitrogen double bond (exo-C=N) are introduced into the reaction with these dipoles, spiro-fused 1,2,4-triazoline or 1,2,4-oxadiazoline cycles are formed. Such reactions can provide efficient synthetic approaches to spiro-heterocyclic compounds with enhanced biological activity. This review comprehensively summarizes the literature data on the 1,3-dipolar cycloaddition of nitrile imines and nitrile oxides to exo-C=N bonds for spiro compound synthesis. The research area covers reactions of both saturated and unsaturated dipolarophiles, monocyclic and polycyclic molecules, as well as compounds containing one to three heteroatoms, with special emphasis on systems containing biologically significant heterocyclic pharmacophores. Recent advances in reaction techniques, such as microwave and ultrasonic activation, as well as one-pot and diffusion protocols, are also mentioned
Mitochondrial ATP Biosynthesis Is Negatively Associated with FFA in Cardiac and Skeletal Muscle During the Development of Obesity in a Rodent Model
Many factors related to obesity can impact how mitochondria produce ATP, such as the uncoupling of oxidative phosphorylation (OXPHOS) caused by proton leaks from built-up free fatty acids (FFA), the increased levels of uncoupling proteins (UCPs), and changes in the levels of ATPase inhibitory protein factors 1 (IF1). Therefore, the present study aimed to assess the rate of ATP synthesis in mitochondria isolated from skeletal and cardiac muscle from animal models of sucrose diet-induced obesity at different time periods. Short periods of sucrose intake (6 and 12 weeks) are sufficient to induce fat accumulation, hypertriglyceridemia, and high plasma FFA. However, a significant decline in the ATP synthesis rate starts to be obvious in mitochondria from skeletal muscle after 24 weeks of sucrose consumption. This impairment of ATP synthesis is associated with increased FFA in skeletal muscle homogenate. ATP synthesis rates in both skeletal and cardiac muscle were found to be sensitive to oleic acid and GDP, a physiological inhibitor of UCPs that has been shown to increase with aging. In addition, a sucrose diet increases the IF1 content in both skeletal and heart muscle, probably to avoid the hydrolytic activity of ATP synthase. In mitochondria from heart muscle, a decrease in the ATP synthesis rate was only observed according to the age in both groups of rats, and it was not affected by sucrose feeding. Our results suggest that the decline of the ATP synthesis rate in mitochondria from skeletal muscle can be due to the accumulation of FFA in skeletal muscle tissue as uncouplers, and the IF1 overexpression induced by the sucrose diet is a response mechanism to avoid the ATP hydrolysis and to save the energy charge reduced by FFA-uncoupling OXPHOS
Comparative Removal Properties of Sodium Magadiite and Its Protonic Form on Basic-Blue 41 from Contaminated Aqueous Solution
Sodium magadiite (Na-Mgd) was hydrothermally prepared and converted to its protonic (H-Mgd) form by reaction with hydrochloric (HCl) solution. The obtained products were studied as adsorbents for basic blue 41 (BB-41) removal from polluted aqueous solution. Na-Mgd and H-Mgd were characterized by different techniques. Powder X-ray (PXRD) diffraction data confirmed a pure Na-Mag phase and its conversion to acidic form (H-Mgd) with shift in d001 value from 1.54 nm to 1.12 nm. X-ray fluorescence (XRF) data supported the exchange of Na cations by protons for H-Mag. 29Si magic angle spinning nuclear magnetic resonance (MAS-NMR) indicated a change in the local environment of silicon nucleus when Na-Mgd was treated with HCl solution. The BB-41 removal dyes were investigated throughout the batch process. Effects of selected parameters, for example, the adsorbent dosage, pH of the BB-41 solution, pH of the H-Mag solid, and starting concentration, were explored. The equilibrium data were fitted to the Langmuir and Freundlich isotherm models. The maxima removal capacities of Na-Mgd and H-Mgd were 219 mg/g and 114 mg/g, respectively. The regeneration and reusability tests were performed using initial concentrations of 50 mg/L and 200 mg/L for seven cycles. The efficiency was maintained for 5 to 6 cycles with a decline of 10% using low initial concentration; however, a decline of efficiency to 30 to 50% was achieved when a higher initial concentration was employed after 3 to 4 regeneration tests for Na-Mgd and H-Mgd samples. Adsorber batch design using the Langmuir and Freundlich isotherm parameters was used to predict its performance for commercial usage. The predicted masses of H-Mgd were higher than those of Na-Mgd to treat different effluent volumes contaminated with 200 mg/L of BB-41 dyes at desired removal percentages