A learning management system (LMS) plays a crucial role in supporting students’ educational activities by centralized platforms for course delivery, communication, and student support. Recently, many universities have integrated chatbots into their LMS to assist students with various inquiries and tasks. However, existing chatbots often necessitate human interventions to manually respond to complex queries, resulting in limited scalability and efficiency. In this paper, we present a memory-augmented large language model (LLM) framework that enhances the reasoning and contextual continuity of LMS-based chatbots. The proposed framework first embeds user queries and retrieves semantically relevant entries from various LMS resources, including instructional documents and academic frequently asked questions. Retrieved entries are then filtered through a two-stage confidence filtering process that combines similarity thresholds and LLM-based semantic validation. Validated information, along with user queries, is processed by LLM for response generation. To maintain coherence in multi-turn interactions, the chatbot incorporates short-term, long-term, and temporal event memories, which track conversational flow and personalize responses based on user-specific information, such as recent activity history and individual preferences. To evaluate response quality, we employed a multi-layered evaluation strategy combining BERTScore-based quantitative measurement, an LLM-as-a-Judge approach for automated semantic assessment, and a user study under multi-turn scenarios. The evaluation results consistently confirm that the proposed framework improves the consistency, clarity, and usefulness of the responses. These findings highlight the potential of memory-augmented LLMs for scalable and intelligent learning support within university environments
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.