Italian Group Fracture (IGF): E-Journals / Gruppo Italiano Frattura
Not a member yet
    2758 research outputs found

    Uniaxial fatigue study of a natural-based bio-composite material reinforced with fique natural fibers

    Get PDF
    This research addresses environmental concerns by exploring environmentally friendly composite materials as substitutes for non-biodegradable synthetic fibers. The study proposes the development of polymer matrix composites reinforced with natural fique fibers, sourced from a plant cultivated in Colombia. A BioPoxy 36 polymer matrix with a high carbon content was used and reinforced with fique fabric using the vacuum-assisted lamination method. To improve the adhesion between the fibers and the matrix, an alkaline chemical treatment was applied to the fiber using 2% sodium hydroxide by weight. Mechanical properties were assessed through ASTM D3039 tensile and ASTM D3479 fatigue tests. A fractographic analysis was also conducted to identify the different modes of failure present. In terms of material degradation, distinct stages were observed, characterized by stiffness loss and loss factor indicators. The Coffin-Manson model was used to obtain the strain life curve for R = 0.1, using these factors as criteria. The static properties of the composite reinforced with fique fibers indicate an increase of 45% in ultimate strength, 145% in strain, and 27% in Young's modulus compared to the unreinforced matrix. In terms of dynamic properties, the elastic modulus showed a maximum variation of up to 7.88%. Electron microscopy reveals the failure mechanism, a distinct separation between the matrix and the fiber can be observed as a result of mechanical stress. The analysis reveals the brittle fracture of the hard fique fiber and some matrix separation, as well as possible fractured bubbles that may have occurred during the manufacturing process

    Evolution of prototyping in automotive engineering: a Comprehensive Study on the reliability of Additive Manufacturing for advanced powertrain components

    Get PDF
    Additive manufacturing (AM) could be used to reduce the production times of prototypes; however, further research is required to address metals structural parts. To obtain the correct properties, some relevant factors to be considered are the build volume, shape factor, and the need for specific heat treatments. This study aims to evaluate the reliability of AM prototypes applied at a new powertrain system developed to reduce vehicle emissions. Firstly, it was investigated the mechanical behavior, microstructure, and the effect of sample size and heat treatments on both specimens and prototypes made of AM 17-4PH steel. Finite Element Analysis (FEA) was performed to evaluate the structural resistance. Finally, the prototypes were produced, analyzed, and tested on a functional engine test bench to evaluate their reliability. The mechanical properties decreased with an increase in the sample volume. After heat treatment, the yield strength increased, due to the transformation of δ-ferrite in martensite and the reduction of retained austenite. The engine test bench was successfully completed. The conclusions set the basis for similar future applications of time-effective prototypes that can be dimensioned owing to appositely developed postprocesses that guarantee the required resistance

    Introduction and application of a drive-by damage detection methodology for bridges using variational mode decomposition

    Get PDF
    In this research, the variational mode decomposition (VMD) method is used for the drive-by health monitoring of bridges. Firstly, the problem of a half-trailer tractor moving over a bridge is formulated. Next, a Finite Element (FE) code is developed and verified against modal analysis results where complete agreement is found. The vehicle's output signals are decomposed through VMD and then analyzed to identify and precisely locate damage in the bridge structure. The range of applicability of this technique is examined from different perspectives by including various road classes, damage severity and location, and noise. The results prove the robustness and reliability of using VMD for drive-by damage detection. The method outcomes indicate that through the VMD method, cracks with a depth of 10% to 20% of the beam height can be detected even in the case of a rough road profile. A comparison of the results of the VMD and the well-known empirical mode decomposition (EMD) method has also been conducted. This comparison reveals that by implementing the VMD, precise damage locations can be determined, whereas the EMD fails to detect any damage under the conditions considered in this study. The effects of noise and moving vehicle speed are also investigated in the research, and it is found that processing the output signals using VMD can yield reliable estimates of the damage location(s)

    Microstructure, Mechanical and Fractographic behaviour of the Diffusion Welded Joints of AA2219 and Ti-6Al-4V for aerospace applications

    Get PDF
    Diffusion welding is an advanced joining process that assures the feasibility of joining dissimilar metal alloys without producing metallurgical impurities at the joint interface. Two significant aerospace alloys, AA2219 and Ti-6Al-4V, are diffusion welded for the various holding times (30-120 minutes) by keeping the bonding temperature and pressure constant. The effect of holding time on the microstructure of the diffusion welded joints is evaluated using scanning electron microscopy (SEM), and the diffusion behaviour across the joint interface is ensued by the line scan energy dispersive spectroscopy (EDS). The obtained results show that the hardness across the joint interface is increased with increase in holding time. Furthermore, the maximum shear strength of 143.58 MPa is achieved for the joint formed at the holding time of 90 minutes and reduced thereafter. The formation of a thick intermetallic layer at a higher holding time strongly affects the shear strength. It is evident from the resulting fractured surfaces that the joints predominantly failed at the bonding interface, showcasing the brittle kind of failure. The X-ray diffraction (XRD) study on the fractured surfaces substantiates the formation of AlTi, Al2Ti and Al3Ti intermetallic compounds

    Enhancing the flexural performance of lightweight concrete slabs with CFRP Sheets: an experimental analysis

    Get PDF
    The flexural behavior of lightweight concrete two-way slabs is investigated in this work, with a focus on the strengthening or repairing method of externally attaching carbon fiber-reinforced polymer (CFRP) sheets. Five 1000 mm by 1000 mm by 120 mm reinforced lightweight concrete slab slabs were used in the experiment. Tested one specimen with no strengthening and another with CFRP sheet strengthening and repaired the rest with a single layer of CFRP at damage ratios of 50%, 60%, or 70% of the ultimate load, consciously making each slab crack under bending loads while keeping the exact measurements. As to the experiment findings, the ultimate load capacity increased by 30.3% at the strengthened specimen, 17.7% at the 50% damage level, 12.6% at the 60% damage level, and 10.9% at the 70% damage level. As degradation increases, so does the carrying capacity of LWC slabs. The amount of damage LWC slabs sustain influences their stiffness and flexibility. Effectively repairing the sample, CFRP sheets raised the reinforced concrete slabs’ failure stress and stopped the fractures from growing. Reinforced concrete slab failure was increased, and CFRP sheet repairs of the specimens successfully stopped crack propagation

    Experimental investigation on the fatigue and fracture properties of a fine pearlitic rail steel

    Get PDF
    This study reports an experimental investigation of the fatigue and fracture resistance of R350HT, a heat-treated pearlitic rail steel with refined microstructure used in rails. Monotonic tensile, rotating bending, linear elastic plane strain fracture toughness, and fatigue crack growth rate tests are presented. The results are used to outline the basic properties and are corroborated by fractographic investigation. This enables the identification of the dominant type of fracture. Regarding fatigue and fracture resistance, the investigated material shows similar properties as other pearlitic rail steels, such as R260. At room temperature, the dominating fracture is of brittle cleavage type, showing some ductile regions associated with pro-eutectoid.   &nbsp

    On the stress- and strain-based fatigue behavior of welded thick-walled nodular cast iron

    Get PDF
    Nodular cast iron (GJS) represents one of the most widely used materials for vehicle, energy and heavy machinery industry. Nevertheless, foundries struggling with the influence of local material defects in GJS like pores, shrinkages and dross often leading to a locally reduced fatigue strength of the entire component. One measure to tackle those negative effects is the welding of the affected areas. This measure is then successful when locally achieved material strengths and surface qualities are higher than the component with the casting defect. Unfortunately, data for the lifetime and fatigue assessment of welded GJS are not present right now. Thus, the research project »nodularWELD« assessed the local stress- and strain-based fatigue data of different thick-walled GJS grades for building a basis for a successful usage even of defect affected components. So, three ferritic and pearlitic GJS grades were investigated in the heat-affected zone, the base material, the welding filler and more over in an integral material state comprising all those three aforementioned states based on axial and bending investigations. Additionally metallographic and fractographic analysis were conducted

    About Measuring the Stress Intensity Factor of Cracks in Curved, Brittle Shells

    Get PDF
    Most techniques of measuring the stress intensity factor (SIF) in the cracking process assume a crack in a planar medium. Currently, there is no effective approach for curved brittle shells, particularly for non-developable cases, i.e., shapes with non-vanishing Gaussian curvature. This paper introduces a novel approach to obtaining material properties related to fracture by experimentally observing weakly curved surfaces. Based on the DIC record of the displacement field around the crack tip, the truncated Williams expansion is fitted to the data adjusted according to the shallow shell equations. The convergence properties of the method are investigated by comparing experimental data of PMMA cylinders to theoretical and numerical predictions. The applicability of the technique to non-developable surfaces is verified. It is demonstrated that robust convergence requires the number of terms in the Williams expansion exceeding 6. For different geometries, the ratio of the data selection radius and the length of the crack should exceed 0.3

    Mechanical, Fracture, and Thermal Characterization of Post-Cured Hybrid Epoxy Nanocomposites Reinforced with Graphene Nanoplatelets and h-Boron Nitride

    Get PDF
    The post-curing process of cured composites is essential in enhancing the strength, stiffness, elevating the glass transition temperature, and reducing residual stress in polymer thermoset composites. The curing temperature and time are the key factors that affect these properties. In-situ polymerization method was used to prepare composites with varying weight percentages of graphene nanoplatelets (GNP) and hexagonal boron nitride (h-BN) nanofillers (0.1, 0.2, and 0.3 wt% GNP-based composites; 0.3, 0.4, and 0.5 wt% h-BN-based composites; 0.4, 0.5, and 0.6 wt% h-BN+GNP-based composites). The cured composites were post-cured at temperatures of 80°C, 120°C, and 160°C for 120 minutes in a hot air oven. The presence of GNPs and h-BNs in the composites is confirmed using Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Further mechanical and thermal properties were evaluated by conducting tensile, flexural, impact, fracture and differential scanning thermometry (DSC) tests. The simulation analyses were performed using Ansys software, and the results demonstrated a strong correlation with the experimental data, with discrepancies between the two consistently within a standard margin of 20%

    Ultrasonic welding of lap joints of PEI plates with PEI/CF-fabric prepregs

    Get PDF
    In this study, ultrasonic welding (USW) of lap joints of polyetherimide (PEI) plates (adherends) with carbon fiber (CF) prepregs impregnated with PEI was investigated. No energy director (ED) was used, so binder contents were varied in the prepregs to compensate for the lack of the polymer in the fusion zone. In addition, the effect of the USW parameters on the structure and the mechanical properties of the lap-joints were analyzed. The most homogeneous macrostructure, the maintained structural integrity of both the CF-fabric in the prepregs and the lap-joined PEI adherends, as well as the maximum strength properties (tensile strength) were revealed for the USW joints with the minimum polymer content in the prepreg. In this case, rising the USW time from 400 up to 800 ms radically changed the macrostructure of the fusion zone, while the strength properties did not vary significantly (shear stresses were 42–48 MPa). Computer simulation of the influence of the PEI/CF-fabric ratios in the prepregs on the deformation response of the USW joints showed that the prepreg thicknesses and, accordingly, the PEI/CF ratios did not exert a noticeable effect on the strain–stress (tensile) diagrams, while the determining factor was the adhesion level

    2,331

    full texts

    2,758

    metadata records
    Updated in last 30 days.
    Italian Group Fracture (IGF): E-Journals / Gruppo Italiano Frattura is based in Italy
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇