Italian Group Fracture (IGF): E-Journals / Gruppo Italiano Frattura
Not a member yet
    2758 research outputs found

    Development and mechanical characterization of eggshell bio-filler based hybrid composites

    No full text
    Hybridization of natural fiber composite by incorporating waste- derived fillers has been identified as a promising sustainable technique to develop environmentally friendly and economical composites with enhanced mechanical properties. This study explores the mechanical performance of hybrid bamboo-epoxy composites incorporated with bio filler derived from waste chicken eggshells. Compression molding was employed to develop unfilled and eggshell powder filled bamboo composites by varying eggshell content (2, 4, and 6 wt%) while maintaining constant bamboo fiber wt%. Composites were tested for mechanical properties by performing tensile test, flexural test, and impact test per ASTM standards. Results indicated that eggshell filler inclusion significantly modifies the tensile, flexural, and impact strength properties of base bamboo composite. Adding eggshell filler enhanced tensile and flexural properties which was attributed to improved interfacial bonding and efficient stress transfer. Optimal filler was achieved for composites with 4 wt % eggshell exhibiting 13.5% improvement in tensile strength and 16.4% improvement in flexural strength. While reduction in impact strength observed was attributed to incorporation of inorganic eggshell filler which mainly consists of CaCo3 content. The fractography studies revealed the improved fiber-matrix interaction with the inclusion of filler, reduced fiber pullouts, and failure by fiber breakage supporting the observed experimental results

    Revisiting classical concepts of Linear Elastic Fracture Mechanics - Part III: The stress field in a double-edge notched finite strip by means of the “stress-neutralization” technique

    Get PDF
    This is the third part of a short series of paper, revisiting some classical concepts of Linear Elastic Fracture Mechanics. Based on the solution for the single edge notched strip, discussed in Part-II, the present study deals with the stress field developed in a stretched finite strip, weakened by two symmetric edge notches. The notches are of parabolic shape, approximating the configuration of a rounded V-notch, varying from almost semicircular edge cavities to “mathematical” edge cracks of zero distance between their lips. The solution is obtained combining Muskhelishvili’s complex potentials technique with a procedure for “stress-neutralization” of specific areas of the loaded strip. To simplify the procedure, the notches are assumed to be “shallow” (short) so that they do not affect each other. Once the complex potentials are obtained, the stress field variations are plotted along strategic loci of the strip and along the periphery of the notches. Attention is paid to the stress field developed around the bases (tips or crowns) of the two notches, providing relatively simple formulae for the critical tensile stress. In addition, the respective stress concentration factor k is obtained for blunt notches, while in the case the edge discontinuities become “mathematical” cracks, a simple expression is given for the mode-I stress intensity factor KI at the tip of the crack. It is revealed that the assumption of “shallow” notches suffices a quite efficient solution for the overall stress field in finite strips

    The Impact of nanoparticles (B4C-Al2O3) on mechanical, wear, fracture behavior and machining properties of formwork grade Al7075 composites

    No full text
    This study explores how ageing temperature and the volume percentage of Al2O3+B4C nanoparticles influence the machinability and hardness of stir-cast Al-7075 Metal Matrix Composite (MMC). Using liquid metallurgy techniques, hybrid materials were created by reinforcing Al7075 metal matrix with varying weight percentages of nanosized B4C (1.5%, 3%, and 4.5%) and Al2O3 (1%, 1.5%, and 2%). After fabrication, the samples were subjected to five-hour ageing process at temperatures of 100, 120, and 140 degrees Celsius, followed by cooling to ambient temperature (27 degrees Celsius). Hybrid nano composites that had been heat treated were tested for wear, tensile strength, and hardness. Results shows that, the addition of nanoparticles and heat treatment considerably improves the tensile strength, hardness, and wear resistance of hybrid composites by 3%, 17%, and 10%, respectively, for samples reinforced with 4.5% B4C + 2% Al2O3. SEM analysis was used to investigate the type of wear and the tensile fracture mode of nano composite samples by analyzing the wornout surface and the surface where tensile fracture occurred. Machinability was assessed using L27 orthogonal array tests, focusing on three key process parameters: feed rate (0.1 mm/min), depth of cut (0.2 mm/min), and spindle speed (1000 rpm). Outcomes show that, increasing the wt. % of nano-Al2O3/B4C leads to higher machining force and surface roughness (Ra) of MMCs. Conversely, higher ageing temperatures result in decreased machining force and surface roughness. Optimal surface roughness and machining force were achieved with 1% Al2O3 + 1.5% B4C and an ageing temperature of 140°C. These findings offer valuable insights into the ease of machining of composite metal alloys, emphasizing the importance of parameter selection and optimization for desired machining outcomes

    Numerical analysis of 3D printed joint of wooden structures regarding mechanical and fatigue behaviour

    Get PDF
    This paper presents numerical models of a 3D printed plastic joint applicable to the connection of wooden structures. The research presented provides a comparison of two alternative solutions for the geometry of the joint and results from several loading schemes and boundary conditions. Included are analyses evaluating the mechanical behaviour in a simple axial tensile test, a three-point bending test and, finally, a sensitivity analysis of the location susceptible to fatigue damage. The models include a 3D printed polycarbonate joint, wooden elements and steel shear pins. The combined model allows a deeper understanding of the interactions. Finite element method (FEM) software was used to develop the numerical models and suitably defined boundary conditions, and material properties of all parts were adopted. The simulation results show that the 3D joint exhibits a high resistance to tensile loading, while in the case of three-point bending, a higher susceptibility to fracture of the printed joint is observed. The sensitivity fatigue analysis identified critical areas on the 3D printed component that need to be improved before further development. These analyses provide important information for optimizing the design of 3D printed plastic joints intended for wooden structures

    Metastability, adiabatic shear bands initiation and plastic strain localization in the AMg6 alloy under dynamic loading

    Get PDF
    New conception of adiabatic shear bands (ASB) and adiabatic shear failure mechanisms are proposed as special type of critical phenomen, structural-scaling transition, in the ensembles of microshears, governed by the characteristic non-linearity (metastability) of stored (free) energy of solid with mesodefects.  Corresponding free energy release kinetics provides experimentally observed ASB induced staging of plastic strain localization and transition to adiabatic shear failure. ASB staging follows to collective properties of microshears ensemble given by the self-similar solutions of evolution equation providing spatial-temporal microshears localization, momentum transfer and damage localization. The criticality of ASB induced plastic strain localization and failure allows us to avoid the discrepancy in the interpretation of ASB effects as thermo-plastic instability in the balance of the stored energy and structural DRX transformation. The microshear ensemble is considered as the second phase and initiation of collective modes provide different staging according to the metastability decomposition and ASB scaling properties following to the self-similar solutions. Self-similar nature of microshears collective modes providing the ASB dynamics is analyzed as the mechanism of steady plastic wave front unversality in shocked materials. The dynamic split Hopkinson pressure bar tests were conducted with AlMg6 alloy combined with “in-situ” imaging of temperature kinetics by CEDIP Silver 450M high-speed infrared camera with conclusion of the secondary role of thermoplastic instability at the ASB staging. The microstructural study performed by an electron microscopy revealed the correlated behavior of the ensemble of defects, which can be classified as a structural transition and precursor of ASB induced strain localization and failure. The modeling reflecting the links of self-similar solutions in microshear ensembles with relaxation properies and damage localization was applied for the comparative analysis of ASB staging and temperature dynamics given be the infrared imaging.&nbsp

    Using the wavelet transform to process data from experimental studies of the discontinuous plastic deformation effect

    Get PDF
    Vast number of theoretical and experimental works has been devoted to the study of discontinuous plastic deformation (the Portevin-Le Chatelier effect), which manifests itself for most widely used alloys in certain ranges of both temperatures and strain rates. Due to the statistical nature of this phenomenon, difficulties arise in processing, qualitative analysis and quantitative comparison of test results and calculations. Using of statistical methods for these purposes makes it possible to get only some averaged characteristics of the obtained data (usually - moments of the first and second orders in amplitudes and frequencies). A possible alternative for processing of experimental and theoretical results of this effect research is wavelet analysis using. The results of experimental studies of the Portevin–Le Chatelier effect, realized during the deformation of thin-walled tubular specimens made of aluminum alloy AMg6M at certain strain rates at room temperature are presented. Diagrams of deformation under uniaxial tension, shear, proportional and disproportionate loading of specimens were obtained. The inhomogeneity of strain fields and their rates is shown, illustrating the manifestation of the Portevin – Le Chatelier effect under conditions of complex loading of thin-walled tubular specimens made of AMg6M alloy. A brief overview of existing methods and means of non-destructive testing is presented that make it possible to non-contactly record the spatial heterogeneity of plastic yielding. Some possibilities of using the wavelet transform to process certain types of non-monotonic stress-strain diagrams obtained for the specimens made of the aluminum alloy in question are discussed. Using wavelet analysis, a compact presentation of data from field experiments in the form of amplitude-frequency characteristics was obtained. The scalograms analysis of specimen loading diagrams was carried out

    Numerical investigation of an extra-deep drawing process with industrial parameters: formability analysis and process optimization

    Get PDF
    Extra-deep drawing is one of the most important sheet metal forming processes. The appearance of rupture and wrinkling are the most commonly encountered problems in this process. These defects are also very common at a local company, particularly in the manufacturing of wheelbarrow trays. As a consequence, substantial time and costs are incurred in industrial production. To thoroughly analyze and address these defects, the extra-deep drawing operation of the wheelbarrow tray was modeled by the FE method using Abaqus software. A defect-free manufactured wheelbarrow tray was used to validate the accuracy of the numerical approach. Precise measurements of its dimensions were taken through the reverse engineering process using a 3D scanner. Furthermore, other measurements were made with an ultrasonic thickness gauge to have more precise measurements of the product’s thickness. Comparing experimental and numerical results showed good agreement. The outcomes of the numerical analysis indicate that the final shape of the wheelbarrow tray does not contain rupture or wrinkling defects, accurately corresponding to the real cases manufactured at the company. Numerical modeling and optimization of the extra-deep drawing process performed in this study could potentially reduce production losses and improve the overall efficiency of industrial manufacturing

    Phenomenon of ignition and explosion of high-entropy alloys of systems Ti-Zr-Hf-Ni-Cu, Ti-Zr-Hf-Ni-Cu-Co under quasi-static compression

    Get PDF
    The phenomenon of ignition and explosive failure of specimens from high-entropy alloys (HEAs) of systems Ti-Zr-Hf-Ni-Cu, Ti-Zr-Hf-Ni-Cu-Co at quasi-static compression tests was found. It physical model is proposed. It is exhibited that the reason for this phenomenon is the release of energy of the oxidation reaction; such reaction is initiated due to the heat released ahead of the shear crack tip at brittle fracture of the specimens under quasi-static compression. It is shown that ignition and failure by explosion are the specific features of brittle fracture for high-entropy alloys containing Ti-Zr-Hf, in general. This phenomenon is realised when certain critical levels of strength and ductility of these alloys are reached. The importance of these critical levels of strength and ductility lies in the fact that they predetermine the maximum permissible level of strength and brittleness for this class of HEAs, above which they lose their structural and functional properties, turning to the energetic alloys capable of explosive release of a significant amount of thermal energy. This specific feature of the high-entropy alloys containing Ti-Zr-Hf outlines the scope of their application and defines the boundary separating structural and functional high-entropy alloys from energetic high-entropy alloys

    Self-similarity of damage-failure transition and the power laws of fatigue crack advance

    Get PDF
    We propose the interpretation of the Finite Fracture Mechanics based on the criticality of damage-failure transition due to specific metastability of free energy release. Multiscale mechanisms of fatigue damage-failure transitions in metals are studied for Very High Cycle Fatigue and analyzed as duality of inherently linked two types of singularities related to the collective modes of defects and singularity of stress field as the classical framework of fracture mechanics. Development of collective modes of defects (solitary waves of plastic strain localization and blow-up dissipative structures of damage localization) with the nature of intermediate self-similar solutions are considered for the interpretation of the incomplete self-similarity and mechanism of small crack nucleation (“fish-eye” area in VHCF) and growth up to the Paris crack size. Spatial structural scales corresponding to different stages of damage-failure transition were identified due to the analysis of roughness correlation and estimating of the power (the Hurst) exponent and corresponding structural lengths of characteristic fracture surface areas These lengths and power exponents were used in the constitutive laws as the structure sensitive parameters for characteristic damage-failure transition stages (small crack initiation and growth, the Paris crack advance)

    Reuse of sheep wool fibers in the production of ultralightweight foamed concrete: effect of fiber treatment, length, and content on the mechanical properties

    Get PDF
    Concrete is one of the most widely used materials in the world. Still, its production processes, energy consumption, and high use of raw materials make it one of the most environmentally harmful materials. This study aims to enhance the sustainability of concrete by reducing the amount of binder and incorporating secondary materials into the cementitious matrix. The binder reduction is achieved by using a foaming agent that creates a microporous matrix, significantly decreasing the volume of cement in the material. Additionally, reinforcing the material with sheep wool fiber not only improves its mechanical properties but also gives a new purpose to a commonly discarded secondary material. The research specifically seeks to identify the most effective treatments for sheep wool fiber (including non-treated, salt-treated, lime-treated, NaOH-treated, and surfactant-treated fibers), as well as the optimal fiber length (6, 12, and 20 mm) and content (4.5, 9, and 15 kg/m³) for ultralightweight foamed concrete in terms of mechanical strength. The findings demonstrate excellent compatibility between wool fibers and ultralightweight foamed concrete, with fiber-reinforced samples showing up to a 60% increase in flexural strength and up to a 50% increase in compressive strength. Among the various fiber treatments evaluated, surfactant-treated fibers yielded the best results

    2,331

    full texts

    2,758

    metadata records
    Updated in last 30 days.
    Italian Group Fracture (IGF): E-Journals / Gruppo Italiano Frattura is based in Italy
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇