283 research outputs found

    Computational methods for single-cell omics across modalities

    Get PDF

    Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types.

    Get PDF
    Here, we present a computational approach for investigating highly variable genes (HVGs) associated with biological pathways of interest, across multiple time points and cell types in single-cell RNA-sequencing (scRNA-seq) data. Using public dengue virus and COVID-19 datasets, we describe steps for using the framework to characterize the dynamic expression levels of HVGs related to common and cell-type-specific biological pathways over multiple immune cell types. For complete details on the use and execution of this protocol, please refer to Arora et al.1

    INSIGHT: A population-scale COVID-19 testing strategy combining point-of-care diagnosis with centralized high-throughput sequencing

    Get PDF
    We present INSIGHT [isothermal NASBA (nucleic acid sequence–based amplification) sequencing–based high-throughput test], a two-stage coronavirus disease 2019 testing strategy, using a barcoded isothermal NASBA reaction. It combines point-of-care diagnosis with next-generation sequencing, aiming to achieve population-scale testing. Stage 1 allows a quick decentralized readout for early isolation of presymptomatic or asymptomatic patients. It gives results within 1 to 2 hours, using either fluorescence detection or a lateral flow readout, while simultaneously incorporating sample-specific barcodes. The same reaction products from potentially hundreds of thousands of samples can then be pooled and used in a highly multiplexed sequencing–based assay in stage 2. This second stage confirms the near-patient testing results and facilitates centralized data collection. The 95% limit of detection is <50 copies of viral RNA per reaction. INSIGHT is suitable for further development into a rapid home-based, point-of-care assay and is potentially scalable to the population level

    Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics.

    Get PDF
    Protective humoral memory forms in secondary lymphoid organs where B cells undergo affinity maturation and differentiation into memory or plasma cells. Here, we provide a comprehensive roadmap of human B cell maturation with single-cell transcriptomics matched with bulk and single-cell antibody repertoires to define gene expression, antibody repertoires, and clonal sharing of B cell states at single-cell resolution, including memory B cell heterogeneity that reflects diverse functional and signaling states. We reconstruct gene expression dynamics during B cell activation to reveal a pre-germinal center state primed to undergo class switch recombination and dissect how antibody class-dependent gene expression in germinal center and memory B cells is linked with a distinct transcriptional wiring with potential to influence their fate and function. Our analyses reveal the dynamic cellular states that shape human B cell-mediated immunity and highlight how antibody isotype may play a role during their antibody-based selection. This is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science Immunology on Science Immunology Vol. 6, Feb 2021, DOI: 10.1126/sciimmunol.abe6291

    Evolution of oligomeric state through allosteric pathways that mimic ligand binding.

    Get PDF
    Evolution and design of protein complexes are almost always viewed through the lens of amino acid mutations at protein interfaces. We showed previously that residues not involved in the physical interaction between proteins make important contributions to oligomerization by acting indirectly or allosterically. In this work, we sought to investigate the mechanism by which allosteric mutations act, using the example of the PyrR family of pyrimidine operon attenuators. In this family, a perfectly sequence-conserved helix that forms a tetrameric interface is exposed as solvent-accessible surface in dimeric orthologs. This means that mutations must be acting from a distance to destabilize the interface. We identified 11 key mutations controlling oligomeric state, all distant from the interfaces and outside ligand-binding pockets. Finally, we show that the key mutations introduce conformational changes equivalent to the conformational shift between the free versus nucleotide-bound conformations of the proteins.This is the accepted manuscript. The final version is available from AAAS at http://www.sciencemag.org/content/346/6216/1254346.abstract

    Single-cell temporal analysis of natural dengue infection reveals skin-homing lymphocyte expansion one day before defervescence.

    Get PDF
    Effective clinical management of acute dengue virus (DENV) infection relies on the timing of suitable treatments during the disease progression. We analyzed single-cell transcriptomic profiles of the peripheral blood mononuclear cell samples from two DENV patients, collected daily during acute phase and also at convalescence. Key immune cell types demonstrated different dynamic responses over the course of the infection. On the day before defervescence (Day -1), we observed the peak expression of several prominent genes in the adaptive immunological pathways. We also characterized unique effector T cell clusters that expressed skin-homing signature genes at Day -1, whereas upregulation of skin and gut homing genes was also observed in plasma cells and plasmablasts during the febrile period. This work provides an overview of unique molecular dynamics that signify the entry of the critical phase, and the findings could improve the patient management of DENV infection

    Single-cell transcriptome analysis of fish immune cells provides insight into the evolution of vertebrate immune cell types

    Get PDF
    The immune system of vertebrate species consists of many different cell types that have distinct functional roles and are subject to different evolutionary pressures. Here, we first analyzed conservation of genes specific for all major immune cell types in human and mouse. Our results revealed higher gene turnover and faster evolution of trans-membrane proteins in NK cells compared with other immune cell types, and especially T cells, but similar conservation of nuclear and cytoplasmic protein coding genes. To validate these findings in a distant vertebrate species, we used single-cell RNA sequencing of lck:GFP cells in zebrafish and obtained the first transcriptome of specific immune cell types in a nonmammalian species. Unsupervised clustering and single-cell TCR locus reconstruction identified three cell populations, T cells, a novel type of NK-like cells, and a smaller population of myeloid-like cells. Differential expression analysis uncovered new immune-cell–specific genes, including novel immunoglobulin-like receptors, and neofunctionalization of recently duplicated paralogs. Evolutionary analyses confirmed the higher gene turnover of trans-membrane proteins in NK cells compared with T cells in fish species, suggesting that this is a general property of immune cell types across all vertebrates.This work was supported by SystemsX (MelanomX grant for S.J.C.), Cancer Research UK grant number C45041/A14953 to A.C. and L.F., European Research Council project 677501–ZF_Blood to A.C., and a core support grant from the Wellcome Trust and MRC to the Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute

    Mosquito cellular immunity at single-cell resolution

    Get PDF
    Hemocytes limit the capacity of mosquitoes to transmit human pathogens. Here we profile the transcriptomes of 8506 hemocytes of Anopheles gambiae and Aedes aegypti mosquito vectors. This revealed functional diversity of hemocytes, with different subtypes of granulocytes expressing distinct and evolutionarily conserved subsets of effector genes. A new cell type in A. gambiae, which we term megacyte, is defined by a unique transmembrane protein marker (TM7318) and high expression of LPS-Induced TNF-alpha transcription factor 3 (LL3). Knock-down experiments indicate that LL3 mediates hemocyte differentiation during immune priming. We identify and validate two main hemocyte lineages and find evidence of proliferating granulocyte populations. This atlas of medically relevant invertebrate immune cells at single cell resolution identifies cellular events that underpin mosquito immunity to malaria infection
    corecore