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Hemocytes limit the capacity of mosquitoes to transmit human pathogens. Here we profile the 

transcriptomes of 8506 hemocytes of Anopheles gambiae and Aedes aegypti mosquito vectors. 

This revealed functional diversity of hemocytes, with different subtypes of granulocytes 

expressing distinct and evolutionarily conserved subsets of effector genes. A new cell type in 

A. gambiae, which we term megacyte, is defined by a unique transmembrane protein marker 

(TM7318) and high expression of LPS-Induced TNF-alpha transcription factor 3 (LL3).  Knock-

down experiments indicate that LL3 mediates hemocyte differentiation during immune 

priming. We identify and validate two main hemocyte lineages and find evidence of 

proliferating granulocyte populations. This atlas of medically relevant invertebrate immune 

cells at single cell resolution identifies cellular events that underpin mosquito immunity to 

malaria infection. 

 

 Anopheline mosquitoes transmit Plasmodium parasites to humans, and are responsible 

for an estimated 219 million cases of malaria, leading to over 400,000 deaths annually (1). 

Parasites taken up by female mosquitoes from the blood of an infected human transform into 

motile ookinetes, which traverse the mosquito midgut and establish an infection. The mosquito’s 

immune system limits Plasmodium infection in several ways (2-4), and hemocytes, the insect 

white blood cells, are key players in these defense responses (5, 6). Ookinete invasion triggers a 

strong nitration response in invaded midgut epithelial cells and their basal lamina (7, 8). 

Hemocytes that come in contact with a nitrated midgut basal lamina release microvesicles into 

the epithelial basal labyrinth and promote local complement activation, inducing parasite lysis 

(6). An infection with Plasmodium primes mosquitoes to mount a stronger immune response to 

subsequent infections (9).  Primed mosquitoes release hemocyte differentiation factor (HDF) into 

the hemolymph (9), consisting of a complex of lipoxin A4 bound to evokin, a lipocalin carrier (10). 

HDF increases the proportion of circulating hemocytes of the granulocyte type (2) promotes 

microvesicle release, and enhances complement-mediated parasite lysis (6). Enhanced immunity 

is lost if HDF synthesis is blocked (10).   
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 Three hemocyte types have been described in Anopheles gambiae morphologically (11).  

Granulocytes are highly phagocytic cells of about 10-20 μm in diameter. Oenocytoids are 8-12 

μm round cells that produce melanin, an insoluble pigment involved in wound healing and 

pathogen containment by encapsulation. Prohemocytes are round cells 4-6 μm with a high 

nuclear to cytoplasmic ratio, thought to be precursors of the other two cell types. Hemocytes 

alternate between circulatory and tissue-resident (sessile) states (12, 13). However, the full 

functional diversity of mosquito hemocytes and their developmental trajectories have not been 

established, and it is not clear to what extent morphologically similar hemocytes are functionally 

equivalent.  

 

Here, we use single-cell RNA sequencing (scRNA-seq) to analyze the transcriptional profile of 

individual mosquito hemocytes in response to blood feeding or infection with Plasmodium. 

Circulating hemocytes were collected from adult A. gambiae M form (A. coluzzii) females that 

were either kept on a sugar meal or fed on a healthy or a Plasmodium berghei-infected mouse 

(Fig. 1a). Transcriptomes from 5,383 cells (collected 1, 3, and 7 days after feeding) revealed nine 

major cell clusters (Figs. 1b, and S1). Two clusters originate from adipose tissue (fat body, FBC 1 

and 2) and one from muscle tissue (MusC; Fig. 1b-c). FBC1 cells express several immune-

modulatory genes such as CLIPs (CLIPA1, 7, 8, 9, 14), LRIMs (LRIM 1, 4A, 8A, 8B, 9, 17), lectins 

(CTL 4, MA2) and SRPN2 (Figs. 1b-c and S2, Table S1), while FBC2 cells express high levels of 

vitellogenin after blood feeding, a canonical fat body marker (14). On the basis of their unique 

transcriptional profiles, we identified six hemocyte clusters (HC) (Fig. 1b, c). Hemocyte cluster 1 

(HC1) has high mRNAs levels of prophenoloxidases, including PPO4 (Figs. 1b-c) and PPO9, 

characteristic of oenocytoids. This expression profile agrees with reported scRNA-seq data for 25 

hemocytes (15). To select markers for major hemocyte lineages, we used bulk RNAseq data from 

different tissues to identify hemocyte-specific genes (Fig. S3 and Table S2-3). HC1 contains low 

levels of leucine-repeat protein 8 (LRR8) mRNA, while HC2-4 have an inverse pattern (i.e. low or 

absent PPO4 and high LLR8 levels; Figs. 1b-c and 2a, and S2).  
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 In situ hybridization using PPO4 and LLR8 as markers revealed that the morphology of 

circulating HC1 (PPO4high/LLR8low) cells is typical of oenocytoids, with round cells that have few 

pseudopodia and granules (Fig. 2b); while the morphology of HC2-4 (PPO4low/LLR8high) cells is 

typical of prohemocytes and granulocytes (Fig. 2b).  HC2 and HC3 shared markers such as SPARC, 

cathepsin-L and LRR8 (Fig. 1c). However, HC2 had 73% fewer unique molecular identifiers (UMI) 

(mean UMI of 413) in comparison to HC3 (mean UMI of 1,516), suggesting that HC2 cells are less 

differentiated and probably constitute prohemocytes. Our observation that cells of prohemocyte 

morphology did not express markers of the more differentiated HC1 or HC5 cells is consistent 

with this notion (Fig. 2b). HC3 cells have a typical granulocyte morphology, with prominent 

pseudopodia and abundant granules (Fig. 2b). 

 

 HC4 shares markers with HC3, and a correlation analysis shows these cells to be 

granulocytes (Fig. S6c). However, HC3 cells are also characterized by a unique subset of markers 

(Fig. 1c). HC4 cells express cyclin B, aurora kinase and other mitotic markers, suggesting that they 

are proliferating hemocytes (Fig. S6c-e). Cells in HC5 and HC6 both are negative for PPO4 (Figs. 

1c, 2a). HC5 cells express high levels of an uncharacterized transmembrane protein AGAP007318 

(TM7318) and LPS-induced TNF-alpha transcription factor 3 (LL3) (Figs. 1c, 2a), while HC6 is 

negative for those markers and expresses antimicrobial peptides such as defensin 1, cecropins 1 

and C-type lysozyme (Figs. 1c).  Cells in HC5 and HC6 are both LLR8low and PPO4-negative but 

have two distinct morphologies (Fig. 2a-b).  Cells negative for TM7318 (HC6) are small 

granulocytes that express antimicrobial genes (AM Gran) (16.4% of granulocytes), while TM7318 

positive cells (HC5) are in low abundance (0.5% of granulocytes) and represent a separate giant 

cell type (25-40 μm) that we named “megacytes” (Fig. 2b).   

 
 To investigate the differentiation dynamics of A. gambiae hemocytes, we re-clustered the 

cellular transcriptomes at higher resolution and performed lineage-tree reconstruction with 

partition-based graph abstraction (PAGA)(16). The major granulocyte population sub-clustered 

into three cell populations representing a basal, homeostatic state (Gran1), and two states 

activated by blood-feeding and Plasmodium-infection (Gran2 and Gran3), (Fig. 2c, S6a-b). 

Prohemocytes were subclustered into two populations (PHem1 and PHem2), of which PHem2 
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appeared to be an intermediate stage between PHem1 and Gran1. We traced a connection 

between dividing granulocytes (Div Gran) and Gran3 granulocytes, which in turn link to Gran1. 

Gran1 also links to Gran2, which in turn links to megacytes (Megac), while Gran1 links directly to 

antimicrobial granulocytes (AM Gran; Fig. 2d). These findings were confirmed with the diffusion 

maps and slingshot cell-trajectory analysis packages (Fig. S4 and S5). Together, these analyses 

suggest the existence of a proliferative, oligopotent cell population that can replenish the pool 

of granulocytes and differentiate into more specialized hemocytes, such as megacytes and 

antimicrobial granulocytes.  

 

Granulocytes (HC4 subtype) specifically express mitotic markers (Fig. S6c-e) largely in 

response to blood feeding (Fig. S6a-b), in agreement with a recent report that blood feeding 

induced DNA synthesis in hemocytes (17). Our data suggests that granulocyte proliferation and 

prohemocyte differentiation both contribute to the observed increase in granulocyte numbers 

after blood feeding (11, 18, 19). However, the placement of prohemocytes in the granulocyte 

lineage tree should be treated with caution due to the paucity of unique markers. 

 

 Prohemocytes are proposed to be stem cell precursors of both granulocytes and 

oenocytoids (11).  However, oenocytoids are transcriptionally disconnected from other 

hemocyte subtypes, and we did not observe transcriptional markers of cell proliferation in 

oenocytoids, suggesting they may represent a separate lineage which has its origin either in larval 

stages or in other adult tissues. Alternatively, oenocytoids could derive from granulocytes (Fig. 

1b), but the differentiation rate may be very low when melanization responses are not elicited, 

which could result in too few cells at intermediate stages of differentiation to be captured in our 

transcriptomic analysis.  

 

 To assess which of the newly discovered putative cell types are shared between 

anopheline and culicine mosquitoes, we analyzed the transcriptomes of 3123 hemolymph cells 

from A. aegypti, a vector for several viral diseases including yellow fever, dengue, chikungunya 

and Zika. As with Anopheles, a dimensional reduction plot shows both canonical hemocytes and 
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other cell types with mostly fat body signatures (Fig. 3a and Fig S7). A cross-species correlation 

analysis reveals two clusters (AaHC1 and AaHC2) with conserved transcriptome signatures for 

oenocytoids (99% and 77% correlation, respectively, with AgHC1) (Fig. 3a-b) and different 

granulocyte types, including antimicrobial peptide expressing cells (94% with AgHC6), and 

proliferating granulocytes (87% with AgHC4) (Fig. 3a-b; Table S4). Granulocytes and 

prohemocytes are again positioned along a continuum of transcriptomic similarity, with four 

different cell states, including a proliferating S-phase granulocyte cluster (AaHC6) without a clear 

Anopheles equivalent (Fig. 3a-b). Granulocytes express laminins, leucine-rich repeat proteins, 

scavenger receptors, Toll receptor 5, and the transcription factor Rel2 (Fig. S8 and Table S5). 

However, megacytes (AgHC5) lack an obvious counterpart in Aedes, and their unique marker 

(TM7318) is only present in anophelines of the Cellia subgenus (malaria vectors in Africa and Asia, 

Fig. S9).   

 

 The transcription factor LL3 can be detected in granulocytes from Plasmodium-infected 

A. gambiae, and silencing LL3 expression disrupts priming (20).  However, it is not clear whether 

LL3 is essential for HDF synthesis or for hemocytes to respond to HDF.  We found that LL3 is highly 

expressed in megacytes (HC5) (Figs. 1c and 4a) and explored whether silencing LL3 affects the 

HDF response. Transfer of hemolymph from primed A. gambiae donors had HDF activity and 

elicited a strong priming response in control recipients injected with lacZ double stranded (ds) 

RNA, resulting in a prominent increase in circulating granulocytes, a modest increase in 

oenocytoids and a decrease in prohemocytes (Fig. 4b and Table S6-9).  This response was 

abolished when LL3 expression was silenced in the recipients by injection of dsLL3 RNA (Fig. 4b 

and Table S6-9).      We cannot rule out that hemocytes other than megacytes express LL3 at 

levels below the detection limit of scRNA-seq, which could have led to the notion that LL3 is 

upregulated more broadly in granulocytes after Plasmodium infection (20), in which case LL3 

silencing might directly control hemocyte differentiation in response to HDF directly. However, 

the discovery of megacytes expressing high levels of LL3 as a defining feature now raises the 

intriguing possibility that it is this cell type which plays a key role in orchestrating hemocyte 

responses to HDF.  



6 

 

The proportion of circulating granulocytes is low (1-3%) under normal conditions but 

increases in response to Plasmodium infection (2). Whether the increase is due to granulocyte 

proliferation, differentiation from prohemocytes or to mobilization of sessile hemocytes was 

unknown. Transmission electron microscopy of sugar fed mosquitoes showed individual sessile 

hemocytes bathed by hemolymph and attached to the basal lamina of the tissues through 

pseudopods (Fig. 4c), indicative of a dynamic and potentially transient association.  

 

Using whole tissue mount in situ hybridization we found that most sessile hemocytes are 

PPO4low/LLR8high granulocytes (89.3 ± 6.2% SEM), while PPO4high/LLR8low oenocytoids are less 

abundant (4.2 ± 3.1% SEM) and TM7318 positive megacytes are even rarer (2.7 ± 2.3% SEM) (Fig. 

4d-e and Table S10-11). Furthermore, we found a reduction of sessile PPO4low/LLR8high 

granulocytes in response to Plasmodium infection (P<0.0001, Welch T-Test, Fig. 4e and Table S12-

13), with no significant difference in the numbers of sessile PPO4high/LLR8low oenocytoids, 

TM7318+ megacytes or TM7318- AM granulocytes (Fig. 4e and Table S12-13).  In circulating 

hemocytes, P. berghei infection induced high expression of a fibrinogen-like protein AGAP029831 

(FBN29831) (Fig. S10).  RNA in situ hybridization showed that the proportion of FBN29831-

positive cells increased in both PPOlow/LLR8high granulocytes (P<0.0001, X2, Fig. 4f and Table S14-

15) and PPO4high/LLR8low oenocytoids (P<0.0001, X2, Fig. 4g and Table S16-17), indicating that this 

is a general marker of hemocyte immune activation. Infecting A. gambiae with the human 

parasite P. falciparum produced a similar increase in FBN29831-positive cells (Fig. S11).   

Combined, our results suggest that hemocyte recruitment from the body wall, granulocyte 

activation and proliferation, and prohemocyte differentiation can all contribute to boost 

circulating granulocyte numbers upon immune challenge. 

 

The hemocyte atlas presented here confirms the existence of two canonical hemocyte types in 

mosquitoes, the oenocytoids and granulocytes, and with the help of transcript markers we relate 

cellular morphology to their transcriptome. We show prohemocytes and granulocytes to be 

closely related cells, and identified transcriptional profiles and molecular markers that define 
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previously unknown hemocyte subtypes (megacytes, proliferating granulocytes, and 

antimicrobial granulocytes), as well as a subpopulation of fat body cells (AgFBC1) with potential 

immune-modulatory functions.   

 

We define two main hemocyte lineages in A. gambiae: the oenocytoid lineage, and the 

prohemocyte-granulocyte lineage along with three sub lineages leading to differentiated 

megacytes, antimicrobial granulocytes, or proliferating granulocytes. The cell-type markers and 

FISH probes we identify and validate will allow investigators to probe the immune functions of 

megacytes and other specialized hemocyte types in detail, which will provide a basis for a better 

understanding of how cellular immunity limits the ability of malaria parasites to infect 

mosquitoes. Our analysis cannot resolve the developmental origin of oenocytoids, but we 

identify two potential origins for the observed expansion of circulating granulocytes upon blood 

feeding. One is the mobilization of sessile PPO4low/LLR8high cells from the body wall, the other is 

a pool of proliferating, oligopotent granulocytes. Whether prohemocytes, which appear 

transcriptionally related to, but less responsive than granulocytes, can transform into 

granulocytes and whether they need to enter the cell cycle, remains to be determined. These 

questions may now be addressed with the type of lineage tracing experiments commonly 

performed in mouse immunology to resolve the developmental origins and functions of diverse 

immune cell populations. The cell-type-specific marker genes, reference transcriptomes, and 

companion website (https://hemocytes.cellgeni.sanger.ac.uk/) we present here will serve as a 

resource for such studies.  

 

The conservation of diverse and molecularly well-defined hemocyte types between 

distantly related mosquito genera and the apparent absence of megacytes in our A. aegypti 

mosquito dataset raise interesting questions as to how the immune systems of these mosquito 

species have evolved to limit their capacity to transmit parasites and arboviruses to humans. This 

knowledge will ultimately underpin immunological strategies aimed at interrupting disease 

transmission by rendering mosquitoes resistant to such pathogens.  
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Figure 1 
 
 

 
 
Fig. 1: Molecular identification of hemocyte cell types of Anopheles mosquitoes 
a, Workflow and experimental scheme. b, UMAP of 5383 hemolymph A. gambiae (M-form) cells 
colored by cluster (cell type) identity with Seurat clustering. HC, hemocyte cluster; Mus, muscle; 
FBC, fat body cluster. c, Top panel: heatmap showing mean expression of three gene markers per 
scRNA-seq cluster in bulk-RNAseq of mosquito tissues. Hem, hemocytes; Carc, carcasses; Gut, gut 
samples. Bottom panel: dot plot showing corresponding expression of the cluster markers genes, 
where color indicates mean expression and dot size encodes percentage of cells within the 
cluster expressing the marker. Last five digits of each marker gene are the Vectorbase transcript 
accession numbers (after AGAP0).  
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Figure 2 

 
Fig. 2: Cell type validation and characterisation of An. gambaie hemocyte lineages 
a, UMAP visualisation of marker gene expression. Cells with more than 1 UMI shown in red. b, 
RNA in-situ hybridization combined with morphology analysis of circulating hemocytes. Actin 
shown in green, LRR8 in magenta, PPO4 in yellow, TM7318 in red and nuclei in blue. Scale bar: 5 
µm.  c, UMAP of 5383 hemolymph cells colored by cluster (cell state) identity with Seurat 
clustering. d, Unsupervised partition-based graph abstraction (PAGA) network analysis 
connecting stylised cell states based on UMAP clustering. Oen, oenocytoids; Div Gran, dividing 
granulocytes; Gran, granulocytes; Megac, megacytes; AM Gran, antimicrobial granulocytes; 
PHem, prohemocytes. 
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Figure 3 

 
Fig. 3: Characterisation of Aedes aegypti hemocytes and correlation with Anopheles cell types  
a, UMAP of 3123 A. aegypti hemocytes colored by cluster identity with Seurat. b, Heatmap 
showing probability of each A. aegypti hemocyte in a cluster belonging to each of the A. gambiae 
(M-form) cell types after logistic regression and using a multinomial learning approach. Ag, A. 
gambiae (M-form); Aa, A. aegypti. Oen, oenocytoids; Div Gran, dividing granulocytes; Gran, 
granulocytes; Mega, megacytes; AM Gran, antimicrobial granulocytes; PHem, prohemocytes.  
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Figure 4 

 

 
Fig. 4: Anopheles gambiae cellular immune responses to Plasmodium infection  
a, UMAP visualisation of all hemocytes by LL3 expression. Red indicates cells with more than 1 
UMI. Arrow points at megacyte cluster. b, Percentage of circulating granulocytes, oenocytoids 
and prohemocytes of LL3-silenced mosquitoes injected (+) or not (-) with HDF versus double-
stranded lacZ RNA injected mosquitoes used as negative controls (mean ± SEM, **** P<0.0001, 
unpaired t-test; two independent experiments). c, Transmission electron microscopy (TEM) in 
false colors depicting A. gambiae (M form) granulocyte (purple) attached via pseudopodia 
(insert) to the abdominal fat body (blue); scale bar: 1.5 µm. d, RNA in-situ hybridisation of a 
longitudinal section (top panel) or carcass whole-mounts (bottom panels) of control blood-feed 
(Ctl) and P. berghei (Inf) infected A. gambiae mosquitoes. Top panel: GAPDH in green, LRR8 in 
red. Bottom panels: LRR8 in green. Scale bar: 20 µm. e, Quantification of Anopheles hemocytes 
attached to the mosquito fat body with blood-feeding or P. berghei infection, normalised by 
surface area of fat bodies. RNA in-situ hybridisation of a longitudinal section (top panel) or carcass 
whole-mounts. All, all hemocytes; Oen, oenocytoids; Gran, granulocytes; AM Gran, antimicrobial 
granulocytes (mean ± SEM, **** P<0.0001, Welch T-test; three independent experiments). f, 
Percentage of circulating oenocytoids (LRRLPPO4H) and g, granulocytes (LRRHPPO4L) positive for 
FBN29831 in control (C) and P. berghei infected (I) mosquitoes, 48 hours post feeding (right 
panels). Representative RNA in-situ hybridisation pictures of oenocytoids (f) and granulocytes (g) 
with low and high expression of FBN29831 (left panels). Actin in green, FBN29831 in magenta, 
nuclei in blue. Scale bar: 5 µm (****P<0.0001, Chi-square test; two independent experiments).  


