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levels of HVGs related to common and cell-type-specific biological pathways over multiple
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SUMMARY

Here, we present a computational approach for investigating highly variable
genes (HVGs) associated with biological pathways of interest, across multiple
time points and cell types in single-cell RNA-sequencing (scRNA-seq) data. Using
public dengue virus and COVID-19 datasets, we describe steps for using the
framework to characterize the dynamic expression levels of HVGs related to
common and cell-type-specific biological pathways over multiple immune cell
types.
For complete details on the use and execution of this protocol, please refer to
Arora et al.1

BEFORE YOU BEGIN

Overview

Investigation of differentially expressed genes (DEGs) between two biological conditions or paired

samples (e.g., control vs.’ treatment, or healthy vs.’ disease samples) is one of the key steps in

genome-wide gene expression analyses, such as transcriptomic and proteomic studies. With sin-

gle-cell RNA-sequencing (scRNA-seq) technologies, we are now able to look into transcriptomic

profiles of individual cells, and hence perform DEG analyses on different cell types and suppopula-

tions. Alternatively, one can also characterize a set of genes that are differentially expressed be-

tween cell types, frequently referred to as marker genes. However, most current computational

methods were intended for the comparison between two conditions of interest and/or on specific

cell type at the time,2–9 but not for investigating gene expression dynamics across more than two

conditions, such as in a time-course dataset.

Here, we present a framework for identifying and investigating highly variable genes (HVGs) that

demonstrate highly dynamic expression patterns across several time points (or biological condi-

tions). Using our workflow, one can visualize relative expression levels of HVGs associated with
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biological pathways of interest in multiple time points and across different cell types in one analysis.

Using publicly available time-course scRNA-seq datasets of dengue1 and SARS-CoV-210 infections,

we have demonstrated how the protocol can be used to extract HVGs, their biological processes,

and gene expression patterns that are unique to certain cell types, or shared across multiple popu-

lations of cells.

Install tools/packages

1. Installation of R (https://www.r-project.org/), and optionally, RStudio (https://www.rstudio.com/).

2. Installation of the relevant R packages.

a. All the R packages required from the analyses are listed under the Software and Algorithms

section of the key resources table.

b. Users can also download the Docker Hub, URL: https://hub.docker.com/r/jantarika/rstudio_

denguetimecourse, that contains all the R packages used in this protocol.

Download scRNA-seq datasets

3. Download the datasets, which was used as an example in this protocol.

a. Download the datasets mentioned in the Deposited Data section of the key resources table.

b. Alternatively, the complete datasets used for this analysis are also deposited to Mendeley

Data: https://data.mendeley.com/datasets/6ry3x7r8hf/3.

Institutional permission

The data described in this article were originally published by Arora and Opasawatchai and col-

leagues,1 which was approved by the Institutional Review Boards of Faculty of Medicine Vajira Hos-

pital (No.015/12), Faculty of Tropical Medicine Mahidol University (TMEC 13041) and Faculty of

Medicine, Ramathibodi Hospital, Mahidol University (MURA2019/603).

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Dataset: Raw sequencing data of
4 time-points from DF and DHF
patients and a healthy donor

Arora et al.1 ArrayExpress: E-MTAB-9467

Dataset: 4k PBMCs from a healthy donor 10x Genomics Single Cell
Gene Expression Datasets

https://support.10xgenomics.com/
single-cell-gene-expression/
datasets/2.1.0/pbmc4k

Complete datasets used for this protocol Mendeley Data https://data.mendeley.com/
datasets/6ry3x7r8hf/3

Dataset: Processed scRNA-seq
datasets of COVID-19 PBMC samples

Schulte-Schrepping et al.10 http://fastgenomics.org

Algorithms and computer codes,
and the version record

Arora et al.1 https://github.com/vclabsysbio/
scRNAseq_DVtimecourse
https://doi.org/10.5281/zenodo.7968936

Software and algorithms

RStudio 4.0.2 RStudio https://www.rstudio.com/

Seurat v3.1.2 Stuart et al.2 https://satijalab.org/seurat/

SoupX v1.0.1 Young and Behjati.11 https://github.com/constantAmateur/
SoupX

DoubletFinder v2.0.3 McGinnis et al.12 https://github.com/chris-mcginnis-
ucsf/DoubletFinder

gProfier2 v0.1.8 Raudvere et al.13 https://biit.cs.ut.ee/gprofiler/

ggplot2 v3.3.2 Wickham.14 https://ggplot2.tidyverse.org/

tidyverse v.2.0.0 Wickham et al.15 https://www.tidyverse.org/packages/
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MATERIALS AND EQUIPMENT

Bioinformatic analyses

All the bioinformatic analyses presented here were tested on an in-house server (Intel Core Proces-

sor (Broadwell, IBRS), 39 CPUs, and 480 GB RAM.), running on Ubuntu 16.04.6 LTS.

STEP-BY-STEP METHOD DETAILS

Before identification and investigation of time-course HVGs and their dynamic expression profiles,

the scRNA-seq data must be pre-processed and quality controlled, which are summarized briefly

here, and are described in details through GitHub (https://github.com/vclabsysbio/scRNAseq_

DVtimecourse). Note that these steps have also been comprehensively described elsewhere.16–18

QC and filtering single-cell RNA-seq data

Timing: � 1–2 h/sample (for steps 1 to 3)

The quality control and filtering scRNA-seq data were performed separately on individual samples,

before data integration and cell type annotation (Figure 1). The QC stage comprises correcting of

ambient RNAs, exclusion of dead and low quality cells and potential doublets, in prior to the down-

stream bioinformatic analyses. Raw and filtered expression matrices generated by the cellranger

count function are required as the inputs of this step - see key resources table.

Note: Figure 1 illustrates the overview of the bioinformatic pipeline described in this protocol.

Note: R packages and codes required for theQC and filtering step are provided inGithubURL:

https://github.com/vclabsysbio/scRNAseq_DVtimecourse. Complete datasets used for this

step are deposited in Mendeley Data: https://data.mendeley.com/datasets/6ry3x7r8hf/3.

1. Correct ambient RNAs using SoupX.11

Note: Check for the expression levels of ambient RNAs in your datasets. If an excessive

amount is observed, users can apply several ambient RNA removal tools such as SoupX11

to correct their expression levels. For more details of predicting and correcting the expression

values of ambient RNAs, please refer to the SoupX tutorial.11

2. Exclude the cells expressing excessive mitochondrial genes, in this example, more than 10% in

the total transcript counts.

Note: Check the distribution of percent mitochondrial genes (percent.mt) to determine suit-

able cut-offs in your scRNA-seq datasets. For details, please refer to the Seurat toolkit.2

3. Predict and discard doublets using doubletFinder.12

Note: For droplet-based scRNA-seq, we recommend excluding ‘‘doublets’’ and ‘‘multiplets’’.

Formore details about the optimal cut-offs in each parameter, please refer to doubletFinder.12

Data normalization, integration, and cell type annotation

Timing: � 2 h (for steps 4 to 7)

After filtering out low quality cells and correcting the expression values of ambient RNAs, the data

are used as inputs for normalization, integration, and cell type annotation. Seurat objects of individ-

ual samples after QC and filtering step are used as the inputs of this step.
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4. Run the standard preprocessing workflow for each individual sample.

a. Import and create a list of individual Seurat objects after the QC and filtering step.

b. Run the SCTransform function, a regularized negative binomial regression.19

c. Apply the first 30 principal components (PCs) for cell clustering.

d. Identify cell clusters by the shared nearest neighbor (SNN) method using the Louvain algo-

rithm with multilevel refinement.

5. Integrate all the samples. We used the following settings in our examples here: three thousand

(3,000) features, a Louvain algorithm with multi-level refinement for clustering and the resolution

of three. Other parameters are as default.

6. Normalize the transcript counts of each cell using the NormalizeData() function.

Figure 1. Overview of bioinformatic pipeline of scRNA-seq data analysis described in this protocol

HVGs, highly variable genes.
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7. Identify major immune cell types using known canonical marker genes (as described in Table S1).

Note: For cell type annotation, in our examples we first labeled different clusters of T cells with

the same name in order to group them together as a single ‘‘T cells’’ cluster, which was sub-

sequently re-clustered into subpopulations.

Note: High heterogeneity of PBMCs, especially at the subpopulation levels, might be difficult

to identify using the known marker genes (Table S1). Alternatively, reference-based for cell

type annotation such as SingleR,20 Azimuth,21 and ScType22 can be applied.

Highly variable gene (HVG) identification and pathway enrichment analysis across multiple

time points – Dengue case study

Timing: � 10–15 min (for steps 8 to 14)

Here, we describe the process for obtaining HVGs, which represent the variations in transcriptional

levels across several biological conditions (typically >2 conditions, in our case, four time points from

two DENV-infected patients and two healthy controls) in multiple immune cell types of interest. The

inputs of this step are the integrated scRNA-seq Seurat objects from the previous pro-processing

and cell type annotation described above (Figure 1).

Note: We first performed a pseudo-bulk expression analysis by calculating the average tran-

scription levels of all the genes. Then, principal component analysis (PCA) of the averaged

gene expression in each cell type was performed (Figure 2A). This PCA of each cell type

was used to extract the genes that demonstrate the largest variation across biological condi-

tions, – to be referred to as ‘‘Highly Variable Genes (HVGs)’’. In this example, the most

apparent differences are between the four time points, whereas those between the two

DENV patients are relatively small. Finally, we investigated the biological pathways associated

with the HVGs that show common and unique expression dynamics among different cell types

and biological conditions (Figure 2B). The workflow is described step-by-step below.

Note: Processed scRNA-seq dataset used in this step is deposited in Mendeley Data: https://

data.mendeley.com/datasets/6ry3x7r8hf/3

8. Subset the integrated Seurat object according to their major cell types into monocytes, NK cells,

T cells, and B cells/plasma cells/plasmablasts - the main immune cell types of interest in this

study.

# Load libraries

library(Seurat)

library(gprofiler2)

library(ggplot2)

# Set your working directory, pointing to the folder where all your input and output files will be

saved

setwd("PATH/TO/YOUR/WORKING/DIRECTORY")

# Load integrated data

sc_integrated <- readRDS(file = "PATH/TO/YOUR/WORKING/DIRECTORY/sc_integrated.rds")

# Subset each cell type

ll
OPEN ACCESS

STAR Protocols 4, 102387, September 15, 2023 5

Protocol

https://data.mendeley.com/datasets/6ry3x7r8hf/3
https://data.mendeley.com/datasets/6ry3x7r8hf/3


9. Calculate the average gene expression levels in each cell type across biological conditions of in-

terest.

a. Set the object’s identity class based on condition of interest using the Idents() function.

b. Calculate the average gene expression using the AverageExpression() function.

10. Construct the principal components (PCs) of the average gene expression levels in each cell type

using the prcomp() function in R (Figure 2A).

Idents(sc_integrated) <- "Cell_Types"

each_celltype_list <- list()

each_celltype <- c("Monocytes" , "NK cells" , "T cells" , "B cells")

for (RN in each_celltype) {

each_celltype_list[[RN]] <- subset(sc_integrated , idents = RN)

}

names(each_celltype_list) <- each_celltype

# Calculate average gene expression in each cell type across severity and time

Avg_expression_list <- list()

for (RN in 1:length(each_celltype_list)) {

Idents(each_celltype_list[[RN]]) <- "ST"

Avg_expression_list[[RN]] <- AverageExpression(each_celltype_list[[RN]] , assays =

"RNA" , slot = "data")

Avg_expression_list[[RN]] <- as.data.frame(Avg_expression_list[[RN]]$RNA)

}

names(Avg_expression_list) <- names(each_celltype_list)

# Construct Principal Components (PCs) in each cell type

pca_out <- list()

pca_perc <- list()

df_pca <- list()

for (RN in 1:length(Avg_expression_list)) {

pca_out[[RN]] <- prcomp(t(Avg_expression_list[[RN]]))

pca_perc[[RN]] <- round(100*pca_out[[RN]]$sdev^2/sum(pca_out[[RN]]$sdev^2),1)

df_pca[[RN]] <- data.frame(PC1 = pca_out[[RN]]$x[,1], PC2 = pca_out[[RN]]$x[,2], sample =

colnames(Avg_expression_list[[RN]]))

# Add metadata can be differences in each dataset

df_pca[[RN]]$Severity <- c(rep("DF" , 4) , rep("DHF" , 4) , "Healthy" , "Healthy")

df_pca[[RN]]$Time <- c("Day-2" , "Day-1" , "Def" , "Wk2" , "Day-2" , "Day-1" , "Def" , "Wk2"

,"Healthy I" , "Healthy II")
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Note: Please add metadata based on your datasets.

11. Visualize the PCA results using the ggplot2 package.14

Note: Color and shape can be manually adjusted based on your data.

12. Union the top 500 genes from the first and second PCs of each immune cell type – referred to as

‘‘HVGs’’ herein.

df_pca[[RN]]$Time <- factor(df_pca[[RN]]$Time , levels = c( "Day-2" , "Day-1" , "Def" ,

"Wk2" , "Healthy I" , "Healthy II"))

}

names(pca_out) <- names(Avg_expression_list)

names(pca_perc) <- names(Avg_expression_list)

names(df_pca) <- names(Avg_expression_list)

# Visualize PCA results

for (RN in 1:length(df_pca)) {

pca_plot<- ggplot(df_pca[[RN]], aes(PC1,PC2, color = Time))+ geom_point(aes(shape =

Severity ), size=6 , stroke = 1.4)+ labs(x=paste0("PC1 (",pca_perc[[RN]][1],"%)"), y=pas-

te0("PC2 (",pca_perc[[RN]][2],"%)")) + scale_color_manual(values=c("darkgoldenrod2",

"#ff7400","#ff1218", "#47849c" , "darkgrey" , "gray6")) + theme(axis.text = element_text

(size = 17 , face="bold" , colour = "black") , axis.title.y = element_text(color="black",

size=15, face="bold") , axis.title.x = element_text(color="black", size=17, face="bold")

, legend.title = element_text(face = "bold" , size = 17) , legend.text = element_text(size =

16) , legend.key.size = unit(1, "cm") , legend.key.width = unit(0.5,"cm") , legend.key = ele-

ment_rect(fill = "white") ) + ggtitle(names(df_pca[RN]))

plot(pca_plot)

}

# Union top 500 genes from PC1 and PC2 from all cell types

HVGs_each_celltype <- list()

for (RN in 1:length(pca_out)) {

HVGs_each_celltype[[RN]] <- union(rownames(data.frame(sort(abs(pca_out[[RN]]$rotation

[,"PC1"]), decreasing=TRUE)[1:500])) , rownames(data.frame(sort(abs(pca_out[[RN]]$rota-

tion[,"PC2"]), decreasing=TRUE)[1:500])))

}

names(HVGs_each_celltype) <- names(pca_out)

# unique HVGs based on number of cell types

HVGs <- unique(c(HVGs_each_celltype[[1]] , HVGs_each_celltype[[2]] , HVGs_each_celltype

[[3]] , HVGs_each_celltype[[4]]))

ll
OPEN ACCESS

STAR Protocols 4, 102387, September 15, 2023 7

Protocol



CRITICAL: Edit theunique() functionbasedon thenumbersof cell types in yourdataset. In this

case, we investigated four major immune cell types: monocytes, NK cells, T cells, and B cells.

Note: To find the optimal numbers of top genes that exhibit high variations in PCs, users can

construct and investigate a histogram plot where the y-axis represents PC loading calculated

from the prcomp() function in R, and the x-axis shows the numbers of genes (Figure S1).

Example code.

Figure 2. The relative expression levels of highly variable genes (HVGs) in each biological process (BP) of interest, across the four time points and

major immune cell types, from two dengue-infected patients and two healthy controls

(A and B) Figures were modified from Arora et al., 20221 (A). PCA of average gene expression in each major immune cell type of interest. (B). Dotplot

representing relative expression levels of HVGs. The BPs of the HVGs across the four major immune cell types of interest here are highlighted in red

texts, monocyte-specific BPs are in blue, and B cell-specific BPs are in green.

# Extract PC loading values calculated from prcomp()

PC1_mono <- sort(abs(pca_out[[1]]$rotation[,"PC1"]), decreasing=TRUE)
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13. Perform a pathway enrichment analysis of the HVGs of all cell types using gProfiler2.13

a. All the genes in the genome are used as the background gene set.

b. Perform the pathway analysis using the gost() function.

Note: Beside gProfiler2,13 alternatively, functional enrichment analysis can be performed us-

ing several computational/web tools such as clusterProfiler,23 Gene Ontology Consortium,24

Database for Annotation, Visualization and Integrated Discovery (DAVID),25 Kyoto Encyclo-

pedia of Genes and Genomes (KEGG),26 and Reactome.27

14. Save your outputs (optional).

PC1_NK <- sort(abs(pca_out[[2]]$rotation[,"PC1"]), decreasing=TRUE)

PC1_Tcells <- sort(abs(pca_out[[3]]$rotation[,"PC1"]), decreasing=TRUE)

PC1_Bcells <- sort(abs(pca_out[[4]]$rotation[,"PC1"]), decreasing=TRUE)

# Plot

plot(density(PC1_mono)$y, density(PC1_mono)$x,type="l" , col = "orange" , ylab = "PC1

loading values", xlab = "Number of genes" , main = " " , ylim = c(0,0.02) , xlim = c(0, 2000))

# Add lines

lines(density(PC1_NK)$y, density(PC1_NK)$x,type="l" , col = "red" , lwd=1)

lines(density(PC1_Tcells)$y, density(PC1_Tcells)$x,type="l" , col = "blue" , lwd=1)

lines(density(PC1_Bcells)$y, density(PC1_Bcells)$x,type="l" , col = "green" , lwd=1)

# Add a legend

legend(1550, 0.020, legend = c("Monocytes", "NK cells", "T cells" , "B cells"), fill=c( "or-

ange","red","blue","green" ) , box.lty=0 )

# Add vertical dashed blue line at x = 500

abline(v=500, col="blue" , lty = "dashed")

# Pathway enrichment analysis

# Extract all genes that will be used as the background for pathway analysis

bg <- rownames(Avg_expression_list[[1]])

# Pathway enrichment analysis using gProfiler2

GO_out <- gost(query = HVGs , organism = "hsapiens" , correction_method = "fdr" , custom_bg = bg

, significant = TRUE , user_threshold = 0.05 , evcodes = TRUE , sources = "GO:BP")

# Save outputs

saveRDS(Avg_expression_list, file = "PATH/TO/YOUR/WORKING/DIRECTORY/Avg_expression_list.

rds")

saveRDS(GO_out , file = "PATH/TO/YOUR/WORKING/DIRECTORY/GO_out.rds")

write.csv(HVGs , file = "PATH/TO/YOUR/WORKING/DIRECTORY/HVGs.csv", row.names = F)

write.csv(bg , file = "PATH/TO/YOUR/WORKING/DIRECTORY/bg.csv", row.names = F)
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Investigating dynamic expression patterns of HVGs across all time points and cell types

Timing: � 5–10 min (for steps 15 to 23)

In this section, we describe the normalization method used to obtain relative expression levels of

HVGs associated with biological pathways of interest, across four different time points as well as

cell types (Figure 2B). The integrated Seurat object, average gene expression levels in each cell

type, and the selected GO:BP (biological process gene ontology) terms from the pathway enrich-

ment analysis are used as the inputs of this step.

15. Import the integrated Seurat object, average gene expression levels in each cell type, and bio-

logical pathways of interest into R.

16. Calculate the mean value of each gene across all cells from the integrated Seurat object.

17. Create a list of HVGs in each ‘‘Gene Ontology: Biological processes (GO:BP)’’.

# Load libraries

library(Seurat)

library(gprofiler2)

library(ggplot2)

library(tidyverse)

# Set your working directory, pointing to the folder where all your input and output files will be

saved

setwd("PATH/TO/YOUR/WORKING/DIRECTORY")

# Load objects

sc_integrated <- readRDS(file = file = "PATH/TO/YOUR/WORKING/DIRECTORY/sc_integrated.rds")

Avg_expression_list <- readRDS(file = "PATH/TO/YOUR/WORKING/DIRECTORY/Avg_expression_

list.rds")

selected_GO_out <- readRDS(file = "PATH/TO/YOUR/WORKING/DIRECTORY/selected_GO_out.rds")

selected_GO_out <- selected_GO_out$result

# Calculate the mean value of each gene from all cells

exp_matrix <- GetAssayData(sc_integrated , slot = "data" , assay = "RNA") %>% data.frame() %>%

rownames_to_column()

rownames(exp_matrix) <- exp_matrix$rowname

exp_matrix$rowname <- NULL

exp_matrix$Mean <- rowMeans(exp_matrix)

exp_matrix$Gene <- rownames(exp_matrix)

Mean_all_cells <- exp_matrix[c("Gene" , "Mean")]
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18. Extract the average gene expression values of HVGs in each selected GO:BP.

19. Normalize each gene by adding a pseudocount of 1 (to avoid undefined results from a zero de-

nominator – in unexpressed genes), and then divide by the mean value from all cells.

# Create a list of HVGs in each GO:BP

genes_each_GO <- list()

for (RN in 1:nrow(selected_GO_out)) {

temp <- strsplit(unique(paste(as.character(selected_GO_out$intersection[RN]) , sep =

",")) , ",")

genes_each_GO[[RN]] <- temp[[1]]

}

names(genes_each_GO) <- selected_GO_out$term_name

# Extract average gene expression values of HVGs

Avg_expression_each_GO <- list()

temp_list <- list()

for (RN in 1:length(Avg_expression_list)) {

for (JA in 1:length(genes_each_GO)) {

temp_list[[JA]] <- Avg_expression_list[[RN]][rownames(Avg_expression_list[[RN]]) %in

% genes_each_GO[[JA]],]

names(temp_list)[[JA]] <- names(genes_each_GO)[[JA]]

}

Avg_expression_each_GO[[RN]] <- temp_list

}

names(Avg_expression_each_GO) <- names(Avg_expression_list)

# Normalise each gene by adding a pseudocount of 1, and divide by mean value from all cells.

Avg_expression_each_GO_norm <- list()

for (RN in 1:length(Avg_expression_each_GO)) {

temp <- Avg_expression_each_GO[[RN]]

for (JA in 1:length(temp)) {

temp_1 <- Mean_all_cells[Mean_all_cells$Gene %in% rownames(temp[[JA]]),]

temp_1

temp[[JA]] <- (temp[[JA]] + 1) / (temp_1$Mean + 1)

}

Avg_expression_each_GO_norm[[RN]] <- temp

}

names(Avg_expression_each_GO_norm) <- names(Avg_expression_list)
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20. Calculate the sum of the normalized average gene expression of all HVGs belonging to each

GO:BP of interest.

21. Create a big dataframe, where each row represents each GO:BP and each column represents

each cell type in each condition.

# Sum of each gene in each GO:BP

Sum_avg_expression_each_GO <- list()

for (RN in 1:length(Avg_expression_each_GO_norm)) {

temp <- Avg_expression_each_GO_norm[[RN]]

for (JA in 1:length(temp)) {

temp[[JA]][names(Avg_expression_each_GO_norm[RN]),] <- colSums(temp[[JA]])

}

Sum_avg_expression_each_GO[[RN]] <- temp

}

names(Sum_avg_expression_each_GO) <- names(Avg_expression_each_GO_norm)

# Create list of summation each GO:BP in each cell type

Sum_exp_each_GO_celltype <- list()

for (RN in 1:length(genes_each_GO)) {

Sum_exp_each_GO_celltype[[RN]] <- rbind(tail(Sum_avg_expression_each_GO[[1]][[RN]] ,

1) ,

tail(Sum_avg_expression_each_GO[[2]][[RN]] , 1) ,

tail(Sum_avg_expression_each_GO[[3]][[RN]] , 1) ,

tail(Sum_avg_expression_each_GO[[4]][[RN]] , 1))

}

names(Sum_exp_each_GO_celltype) <- names(genes_each_GO)

# Create a big dataframe, each row represents each GO:BP, and each column represents each cell

type in each condition.

# matrix_size = 1 : (no_of_cell_types x biological_conditions)

no_cell_types <- 4

no_samples <- 10

matrix_size <- no_cell_types * no_samples

Input_dot_plot <- as.data.frame(matrix(1:matrix_size, nrow = 1, ncol = matrix_size))

colnames(Input_dot_plot) <- c(paste("Monocytes" , names(Sum_exp_each_GO_celltype[[1]]))

, paste("NK" , names(Sum_exp_each_GO_celltype[[1]])) , paste("T" , names(Sum_exp_each_GO_

celltype[[1]])) , paste("B" , names(Sum_exp_each_GO_celltype[[1]])))

for (RN in 1:length(genes_each_GO)) {
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22. Calculate the z-score across all samples and cell types for visualization (Figure 2B).

23. Visualize the results using the ggplot2 package.14

temp <- Sum_exp_each_GO_celltype[[RN]]

temp <- cbind(temp[1,],temp[2,] , temp[3,] , temp[4,])

colnames(temp) <- c(paste("Monocytes" , names(Sum_exp_each_GO_celltype[[1]])) , pas-

te("NK" , names(Sum_exp_each_GO_celltype[[1]])) , paste("T" , names(Sum_exp_each_GO_cell-

type[[1]])) , paste("B" , names(Sum_exp_each_GO_celltype[[1]])))

Input_dot_plot <- rbind(Input_dot_plot , temp)

}

Input_dot_plot <- Input_dot_plot[-1,]

rownames(Input_dot_plot) <- names(genes_each_GO)

# For visualization, calculate z-score by row

Input_dot_plot_zscore <- t(apply((Input_dot_plot[,1:length(Input_dot_plot)]), 1, func-

tion(x){

mean <- mean(x)

SD <- sd(x)

Z_score <- (x-mean)/SD

Z_score

}))

Input_dot_plot_zscore <- as.data.frame(Input_dot_plot_zscore)

# Convert to long format for plot

forplot <- gather(Input_dot_plot_zscore %>% rownames_to_column("GO"), key = "ST" , value =

"Expression" , -GO)

forplot <- forplot %>% separate(col = "ST" , into = c("Cell_Types" , "Patients" , "time"),sep =

" " , remove = F)

forplot$time <- factor(forplot$time , levels = c("Day-2" , "Day-1" , "Def" , "Wk2" , "I"

, "II"))

forplot$Cell_Types <- factor(forplot$Cell_Types , levels = c("Monocytes" , "NK" , "T" , "B"))

forplot$Patients <- factor(forplot$Patients , levels = c("DF" , "DHF" , "Healthy"))

# Visualize the relative expression of HVGs over all samples and cell types

ggplot(forplot, aes(x=time, y=GO , color= Expression , size = Expression)) + geom_point(al-

pha = 1.5) + theme_classic() + scale_colour_gradient2( low = "blue", mid = "white", high =

"red", space = "Lab" , limits = c(-max(forplot$Expression),max(forplot$Expression)) ) +

xlab("") + scale_size_continuous(range = c(5,5)) + facet_grid(�Cell_Types+Patients ,

scales = "free", space = "free") + labs(color = paste("z-score")) + theme(axis.text.x = ele-

ment_text(angle = 60, hjust=1), axis.text=element_text(size=20) , axis.title.y = element_
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HVG identification and pathway enrichment analysis across early and late time points in

immune cell types - COVID-19 case study

Timing: � 10–15 min

In addition to the dengue data published in our earlier study,1 here we also demonstrate the appli-

cation of this framework on another time-course scRNA-seq study. We retrieved processed scRNA-

seq data from a COVID-19 study,10 which was deposited on FASTGenomics (https://www.

fastgenomics.org/). We selected two COVID-19 patients (‘‘cohort 1’’) with the donor IDs "C19-

CB-000900 and "C19-CB-001200, whose samples were obtained at the same ‘‘days after symptom

onset’’; together with two healthy donors, "P15F00 and "P17H". We used the same cell type annota-

tion as initially characterized by the authors of the study.10

Note: Using our framework to analyze this COVID-19 dataset, we observed distinct overall

transcriptome profiles between early and late phases of the infection in each of the cell

types of interest, while the differences between the two patients were relatively small (Fig-

ure 3A). Moreover, the overall expression patterns of the two healthy donors were nicely

grouped together and clearly separated from the COVID-19 patients at all the time points

(Figure 3A). We next identified HVGs and virtualized their dynamic expression patterns, for

different groups of biological pathways that the HVGs are associated with (Figure 3B).

Interestingly, we observed clear up-regulation of the HVGs in the early infection associ-

ated with ‘‘response to type I interferon’’, ‘‘interferon-mediated signaling pathway’’, and

‘‘type I interferon-mediated signaling pathway’’ in monocytes (Figure 3B, labeled in

blue), which have also been described in the original paper,10 but using a different analyt-

ical framework.10 In addition to this, our analysis and visualization also revealed cell-type-

specific expression dynamics of the HVGs associated with certain biological pathways,

such as ‘‘natural killer cell mediated cytotoxicity’’ HVGs being specifically upregulated in

NK cells; ‘‘T cell receptor V(D)J recombination’’ HVGs being expanded in CD4+ and

CD8+ T cells, and several B cells-related pathways such as ‘‘B cell activation’’, ‘‘humoral

immune response’’, and ‘‘B cell mediated immunity‘‘ being up-regulated specifically in B

cells at the early infection (Figure 3B), all of which have not been mentioned in the original

study.10

EXPECTED OUTCOMES

We propose an approach for identification of highly variable genes (HVGs) and investigation of their

expression patterns across multiple time points (or biological conditions). Similarly to differentially

expressed genes (DEGs) that are commonly used to represent the genes that might be activated or

repressed differentially between two biological conditions, such as between patients vs.’ healthy

controls, or treatment vs.’ normal controls, HVGs depict the genes that show the highest dynamics

across multiple time points, and their functions might be linked to temporally specific biological pro-

cesses over the course of the studies.

The overall variations between multiple transcriptomes obtained in different biological condi-

tions can be consolidated using Principal Component Analysis (PCA) and then visualized in a

two-dimensional plot. With the scRNA-seq data, we can readily obtain and investigate the

PCA plots of different cell types and subpopulations (Figures 2A and 3A). HVGs of different

cell types are also identified during this PCA process, and used as the inputs of pathway

text(size=25), strip.background = element_rect(colour = "white", fill = c("gray","darkor-

ange3", "gray")), legend.text = element_text(size = 15), legend.title = element_text(size =

20),legend.key.size = unit(1, "cm")) + ylab("Significant GO terms")
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enrichment analysis. Relative expression patterns across time points of HVGs associated with

biological processes of interest are then computed and visualized across different cell types

in a single figure, as shown in Figures 2B and 3B. As demonstrated using the dengue1 and

COVID-1910 case studies, we can identify the biological processes whose HVGs demonstrate

cell-type-specific expression dynamics across the time points, and hence suggest the links be-

tween time-point specific gene expression regulation and relevant biological processes in

each of the cell types of interest. In addition to scRNA-seq, we expect that the framework

will be adaptable for the investigation of temporal or longitudinal gene expression datasets ob-

tained using other high-throughput and omic technologies, such as time-course bulk RNA-seq or

proteomic studies.

Figure 3. The relative expression values of HVGs in each biological process (BP) across two COVID-19 patients during the early time point (d9; 9 days

after symptom onset) and late time point (d16; 16 days after symptom onset), together with two healthy controls

(A) PCA of average gene expression in each cell type. Different colors represent the days after symptom onset, while different shapes represent

individual samples.

(B) Dotplot showing the relative expression levels of HVGs related to each BP. The time-specific BPs described in the original paper10 are labeled in

blue. The NK-specific BP is highlighted in purple, T-specific BP is in dark red, and B-specific BPs are in green. P1 = covid-19 patient 1; P2 = covid-19

patient 2; HC = healthy controls. d9 = 9 days after symptom onset; d16 = 16 days after symptom onset.
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LIMITATIONS

Batch effect can occur when the samples obtained using different technologies or platforms. In

the protocol described here, all the samples were processed using the same versions of the

10x genomics single-cell kits. Hence, we did not observe technical batch effects. If multiple

samples used in the analysis are generated by different techniques, it is advisable to inspect

the batch effect by PCA before starting the HVG analysis. Library preparation techniques could

appear as the factor most affecting the grouping of the samples. In such cases, it may not be

possible to obtain HVGs that truly represent the most variances from biological conditions us-

ing our described protocols. It might be possible; however, to regress such batch effects using

tools such as Harmony,28 Mutual Nearest Neighbors (MNN),29 and Seurat Canonical Correlation

Analysis (CCA).30

TROUBLESHOOTING

Problem 1

Can this protocol be used with a .h5ad input file for the HVG identification (related to step 9)?

Potential solution

A .h5ad file can be converted into a Seurat object, and the average gene expression can be calcu-

lated using the codes below.

Convert a .h5ad file to a Seurat object.

Problem 2

The code described in step 17 is specific for the output generated from the gProfiler2 package.13 If

different functional enrichment tools are used, the outputs might be different from the gProfiler2

one, which could result in an error when running step 17.

Potential solution

Users can alternatively create a list of GO terms themselves, as shown below. Each GO term in a list

should contain genes that are related to that particular GO term. After creating this list, users should

be able to continue with step 18.

library(zellkonverter)

sce <- readH5AD("PATH/TO/file.h5ad", verbose = TRUE)

seurat_obj <- as.Seurat(sce, counts = "X", data = NULL)

Calculate average gene expression levels in each cell type:

Avg_expression_list <- list()

for (RN in 1:length(each_celltype_list)) {

Idents(each_celltype_list[[RN]]) <- "ST"

Avg_expression_list[[RN]] <- AverageExpression(each_celltype_list[[RN]] , assays =

"originalexp" , slot = "data")

Avg_expression_list[[RN]] <- as.data.frame(Avg_expression_list[[RN]]$originalexp)

}

names(Avg_expression_list) <- names(each_celltype_list)
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An example of a list,

Problem 3

The ‘‘ambiguous’’ gene names are sometimes not recognized by the gProfiler2 package13 (related to

step 13).

Potential solution

We encourage users to use the Ensembl IDs as default inputs.

Problem 4

Large R, Rmd scripts, or R objects sometimes cannot be loaded and/or run on Rstudio (related to

HVG identification and pathway enrichment analysis and investigating dynamic expression patterns

of HVGs across all time points and cell types sections).

Potential solution

We encourage users to run the scripts using .R via R or RServer with less Graphic User Interface (GUI)

instead.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the Lead contact, Varodom Charoensawan (Email: varodom.cha@mahidol.ac.

th).jantarikaarora@gmail.com, anunya.opa@mahidol.edu

Materials availability

This study did not generate new unique materials.

Data and code availability

d The complete dataset used for this protocol is deposited to Mendeley Data; https://data.

mendeley.com/datasets/6ry3x7r8hf/3

d Analyses were conducted in R; all the coded described in this protocol have been deposited as

GitHub data: https://github.com/vclabsysbio/scRNAseq_DVtimecourse, and the version record

can be found on Zenodo: https://doi.org/10.5281/zenodo.7968936.

d Further additional information is also available through personnel contacts with the Lead and/or

Technical contacts upon request.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2023.102387.
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