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Short title: A single-cell roadmap of human B cell maturation. 15 

One Sentence Summary: Integrated single-cell transcriptomic and BCR analyses reveal how antibody 16 

class switching influences human B cell fate and function. 17 

 18 

Abstract  19 

Protective humoral memory forms in secondary lymphoid organs where B cells undergo affinity 20 

maturation and differentiation into memory or plasma cells. Here, we provide a comprehensive roadmap 21 

of human B cell maturation with single-cell transcriptomics matched with bulk and single-cell antibody 22 

repertoires to define gene expression, antibody repertoires and clonal sharing of B cell states at single-23 

cell resolution, including memory B cell heterogeneity that reflects diverse functional and signalling 24 

states. We reconstruct gene expression dynamics during B cell activation to reveal a pre-germinal 25 

centre state primed to undergo class switch recombination and dissect how antibody class-dependent 26 

gene expression in germinal centre and memory B cells is linked with a unique transcriptional wiring 27 

with potential to influence their fate and function. Our analyses reveal the dynamic cellular states that 28 

shape human B cell-mediated immunity and highlight how antibody isotype may play a role during their 29 

antibody-based selection. 30 

 31 
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Introduction 32 

Protective humoral immune responses require the formation of a functional antibody repertoire by B 33 

cells within secondary lymphoid organs (SLOs) such as the spleen, peripheral lymph nodes and tonsils. 34 

After antigen encounter, activated B cells either differentiate into short-lived plasma cells or following 35 

cognate interaction with antigen-specific T cells can form germinal centres (GCs) (1). GCs are transient 36 

structures where B cells undergo iterative cycles of clonal expansion and somatic hypermutation (SHM) 37 

in the variable regions of their immunoglobulin heavy (IgH) and light chain genes followed by affinity-38 

based selection of antigen-specific clones. This dynamic process occurs in spatially distinct dark and 39 

light zones (DZ and LZ) under the regulation of a network of specialised T follicular helper cells, follicular 40 

dendritic cells and macrophages (2).  41 

 42 

B cells differentiate and exit the GC either as antibody-secreting plasmablasts committed to the plasma 43 

cell lineage or memory B cells (MBC), which are long-lived quiescent cells capable of being reactivated 44 

upon antigen re-exposure (3). Antibody effector functions are broadly determined by their isotype, which 45 

is specified by the constant domain genes in the IgH locus. During maturation B cells may undergo 46 

class switch recombination (CSR), which involves deletional recombination of IgM and IgD constant 47 

domain genes and expression of a different downstream constant domain gene (IgG1-4, IgA1-2, IgE) 48 

(4). Specific hierarchies in isotype switching patterns have been reported in peripheral blood (5). 49 

Antibody repertoires and B cell-mediated immunity are therefore shaped by the combined influences of 50 

cell fate decisions, affinity maturation and CSR. 51 

 52 

B cells express their antibody immunoglobulin genes as part of a membrane-bound complex termed 53 

the B cell receptor (BCR). During maturation in GCs, antigen-binding and downstream signalling of the 54 

BCR is a primary determinant of B cell survival and differentiation (6, 7). BCR activation thresholds and 55 

downstream signalling can differ due to isotype-specific differences in extracellular, transmembrane 56 

and intracellular domains of immunoglobulin proteins forming the BCR (8-10). Thus, as well as shaping 57 

the effector functions of subsequent antibody repertoires, CSR may influence B cell survival or fate 58 
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specification during affinity maturation. However, deconvolution of SHM, class switching and diverse 59 

cell states in the polyclonal context of human SLOs in vivo has proved a challenge (2).  60 

 61 

To improve our understanding of the cellular, transcriptional and antibody repertoire dynamics during 62 

human B cell maturation in vivo, we performed unbiased single-cell transcriptomic and repertoire 63 

profiling of a widely studied model SLO, the human tonsil (https://www.tonsilimmune.org/). These 64 

integrated bulk and single-cell antibody repertoires paired with single-cell transcriptomics allowed us to 65 

define transcriptional B cell states, including a detailed exploration of MBC heterogeneity, reconstruct 66 

temporal gene expression dynamics and resolve unique functional capabilities of GC and MBCs linked 67 

to antibody class switching. This roadmap of human B cell maturation provides unprecedented 68 

resolution of the formation of B cell-mediated immunity and is a unique resource to study both normal 69 

and pathological B cell responses.  70 

 71 

Results 72 

Defining the antibody class switch recombination landscape of human tonsillar B cells 73 

The majority of high-throughput antibody repertoire sequencing studies in human have examined 74 

peripheral blood B cell subsets, which significantly differ to dynamic repertoires in active SLOs. To 75 

provide a subclass-specific and quantitative analysis of the antibody repertoire landscape in human 76 

tonsils, we sequenced the antibody repertoires of four broadly defined tonsillar B cell subsets; naïve, 77 

GC, memory and plasmablasts using a unique molecular identifier-indexed protocol (Fig1A) (5). We 78 

analysed tonsillar B cells from both recurrent tonsillectomy and obstructive sleep apnoea patients and 79 

found good agreement between bulk FACS-sorted B cell repertoires and donor-matched unsorted 80 

single-cell antibody repertoires (FigS1, Fig2). As expected, naïve B cell repertoires were predominantly 81 

unswitched and unmutated. GC and MBCs comprised both switched and unswitched IgH sequences 82 

with elevated SHM and plasmablasts were nearly all switched and highly mutated (Fig1B-C).  83 

 84 

Higher IgH SHM frequencies within the GC typically reflect higher affinity BCRs and are proposed to 85 

bias GC B cells towards the plasmablast rather than the MBC fate (11, 12). In keeping with this, 86 
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plasmablast-derived repertoires in tonsil generally contained higher SHM frequencies than those of 87 

MBCs (Fig1C). However, by resolving for antibody subclass, we found that SHM levels were broadly 88 

similar between different mature B cell subsets, with the exception of IgD and increased in frequency 89 

along the immunoglobulin locus (Fig1D). Comparison of the clonal diversity of subclass-specific MBCs 90 

and plasmablasts revealed unswitched and IgA+ MBCs were less clonally expanded (as evidenced by 91 

higher diversity) than plasmablasts of the same isotype, while IgG+ MBCs and plasmablasts appeared 92 

to have clonally expanded to similar degrees (Fig1E). This is not likely explained by differences in SHM 93 

frequencies (Fig1D), but may reflect differences in their selection or cell fate specification linked with 94 

the outcome of CSR. Indeed, when we examined antibody subclass frequencies in these broadly 95 

defined B cell populations we found that as well as an increased propensity to retain IgM expression 96 

(Fig1B), MBCs were 3.3- or 7.3-fold more likely than plasmablasts to express IgA1 or IgA2 respectively, 97 

while plasmablasts were more likely to express IgG1 (Fig1F). Intriguingly, these enrichments were 98 

linked with specific B cell fates even for expanded clones spanning different subsets (Fig1G, FigS2). 99 

 100 

To explore how these subset-specific class switching patterns might arise, we reconstructed 101 

phylogenies for 28,845 expanded clones and calculated the likelihood that specific CSR events had 102 

occurred between closely related B cells compared to that expected by chance (Fig1H), similar to 103 

analyses performed in peripheral blood B cells (5). MBC clonal lineages exhibited greater likelihoods 104 

for switching of isotype pairs closely located in linear space along the IgH locus, compared to 105 

plasmablast clones which demonstrated a more eclectic pattern of isotype switching (Fig1H). Of note, 106 

both the antibody subclass frequencies and reconstructed class switch hierarchies of MBCs closely 107 

resembled those of GC cells, consistent with models that propose a stochastic exit of MBCs from the 108 

GC (13, 14), in contrast to active selection of the plasma cell fate. Together, these analyses provide 109 

evidence that antibody-based selection mechanisms differ for two major B cell fates and that this 110 

appears related to the outcomes of CSR earlier in maturation.  111 
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A single-cell atlas of tonsillar immune cells defines diverse B cell states during maturation 112 

FACS-based strategies to study dynamic cell processes in human tissues may miss rare or unknown 113 

cell populations. Therefore, in parallel to our bulk antibody repertoires (Fig1), we performed single-cell 114 

RNA-seq (scRNA-seq) paired with single-cell immunoglobulin VDJ sequencing (scVDJ-seq) for 115 

unsorted tonsillar immune cells from the same samples (Fig2A-B). After stringent quality control, we 116 

retained the transcriptomes of 32,607 cells (n=7; median of 3142 and mean of 4658 cells per donor) 117 

from which we identified 30 distinct cell populations (Fig2C-D, TableS1). Although our primary focus 118 

was understanding B cell maturation, we annotated 11 T cell and 7 non-lymphoid populations (Fig2C, 119 

S3A-D, TableS2-3) as a valuable resource to study these cells. Importantly, we did not identify any 120 

populations unique to recurrent tonsillitis or obstructive sleep apnoea patients (FigS3E).  121 

 122 

Tonsils are a model SLO capable of inducing both systemic and mucosal immunity. We found that 123 

major tonsillar immune cell states were broadly conserved in other SLOs such as lymph nodes and 124 

spleen (FigS4), similar to other analyses (15), although we observed enrichment of GC-associated cell 125 

states in paediatric tonsils that likely reflect differences in donor ages (FigS4B-D). We also observed 126 

differences in antibody features (FigS4E-F) that may reflect tissue-specific difference in local cytokine 127 

environments. The broad conservation of cell states across different SLOs supports the use of tonsils 128 

as a model system to study systemic immunity and highlights the importance of profiling 129 

immunologically-active tissues to understand GC-dependent B cell maturation. 130 

 131 

We next examined B cell states within our single-cell transcriptomic atlas. To improve the power and 132 

accuracy of our single-cell antibody repertoire analyses, we integrated single-cell and bulk repertoires 133 

for each donor (Fig2E). We identified 12 distinct B cell populations based on unbiased clustering of 134 

gene expression (Fig2F, S5, Table S4) and quantified their antibody isotype frequencies (Fig2G, S6A), 135 

SHM levels (Fig2H, S6B), clonal diversity (Fig2I-J) and relationships with other B cell subsets (Fig2K-136 

L). All populations were reproducibly observed across patients, regardless of tonsillitis history (Fig2M, 137 

S3E). We identified all major stages of B cell maturation in human tonsils, including naïve, activated, 138 

GC (including both LZ and non-proliferating DZ cells), MBCs, tissue-resident FCRL4+ MBCs, 139 
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plasmablasts and a cycling population consisting mostly of DZ GC cells (Fig2H). We also annotated a 140 

class-switched, hypermutated and clonally-expanded GC B cell subset expressing plasmablast-specific 141 

transcription factors (PRDM1, XBP1) (Fig2F-J, S5), consistent with a pre-plasmablast (prePB) 142 

population reported recently in tonsillar GC B cells (FigS5C) (16). We found that prePB GC cells 143 

uniquely expressed several interesting gene markers, including signalling molecules like FRZB and 144 

BTNL9 (Fig2F, S5A), although the functional relevance of this is unknown. 145 

 146 

Our unbiased analysis of B cell states revealed two additional populations of particular interest. First, 147 

we define a naïve “preGC” B cell state expressing unmutated IgM and IgD that transcriptionally share 148 

markers with both naïve and LZ GC populations (FigS5A-B), but have yet to acquire features consistent 149 

with B cell maturation in the GC such as CD27 and CD38 expression, hypermutated antibody genes or 150 

clonal expansion (Fig2F-J, S5B). Flow cytometry of several marker genes expressed by these cells 151 

(CD23 (FCER2), CD108 (SEMA7A) and CD58) confirmed the enrichment of a similar state in naïve B 152 

cell populations (FigS7). Secondly, we discover a transcriptionally distinct and clonally-expanded IgM+ 153 

B cell population in the GC with elevated expression of genes associated with inhibitory BCR signalling, 154 

such as FCRL3, FCRL2, SAMSN1, and SIGLEC10 (Fig2D,F-J), that we refer to as FCRL3high GC B 155 

cells. While these cells also expressed high levels of the proposed pre-MBC marker CCR6 (12), they 156 

typically had inconsistent expression of other recently defined pre-MBC markers (FigS5C) (16). As this 157 

cluster of unswitched cells was defined by very high FCRL2 and FCRL3 expression (Fig3F), we 158 

examined these markers by flow cytometry of tonsillar B cells and found a strong relationship between 159 

surface expression of FCRL3, but not FCRL2, and IgM expression in both GC and MBC populations 160 

(FigS8A-F). We also identified a rare population of FCRL3high GC B cells by immunohistochemistry 161 

(FigS8G-H). Although the precise ontology of these cells remains unclear, scVDJ-based analyses found 162 

that FCRL3high GC B cells are part of highly expanded GC-derived clones that contain both MBCs or 163 

plasmablasts (Fig2K-L, FigS9), indicating that they arise through productive GC reactions and are 164 

unlikely to be derived from a separate or committed lineage.  165 

 166 
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Pseudotemporal reconstruction of human B cell activation and GC formation 167 

During activation, B cells acquire antigen, either in soluble form or displayed on the surface of follicular 168 

antigen-presenting cells (APCs), allowing them to migrate to the T cell zone where they can participate 169 

in GC reactions. We reasoned that our single-cell atlas of B cell maturation would contain a full spectrum 170 

of activation states and allow us to reconstruct temporal gene expression and antibody repertoire 171 

dynamics during B cell activation and formation of the GC response. Our scRNA-seq analysis identified 172 

a B cell cluster composed of both antigen-inexperienced naïve B cells and antigen-experienced MBCs 173 

(FigS10) that had elevated expression of activation marker genes (Fig3A) and high frequency of 174 

predicted cell-cell interactions with APCs (Fig3B). This activated B cell state appeared capable of 175 

communicating with both APCs and T cells through ICAM1-ITGAL1 (LFA-1) and/or IL6, respectively 176 

(Fig3C). Many of these predicted cell-cell interactions were also detected in preGC and LZ GC B cell 177 

states (Fig3C) before being lost in other GC B cell populations, suggesting that preGC B cells might 178 

exist as a transitional state between initial B cell activation and GC formation.  179 

 180 

To better understand the transcriptional dynamics of different B cell populations, particularly the preGC 181 

B cell state, we performed RNA velocity analysis (17, 18) to model transcriptional kinetics of individual 182 

B cells and infer their directionality and relationship with other B cell populations. This confirmed that 183 

preGC cells exhibit a strong directionality towards the LZ GC state (Fig3D), fitting with their 184 

transcriptional relatedness (FigS5A) and independent partition-based graph analysis (FigS11). 185 

Velocity-based pseudotemporal ordering of naïve, activated, preGC and LZ GC B cells placed preGC 186 

cells between activated and LZ GC B cells and revealed the full continuum of gene expression from 187 

early activation events to bona fide GC B cells (Fig3E-F). This included the dynamic expression of key 188 

signalling molecules and transcription factors such as CD40, EBI3, MIF, BATF, BHLHE40 and MYC 189 

(FigS12A). Crucially, we found that the activated B cell cluster (including both activated naïve and MBC 190 

sub-populations) (FigS10) placed early in the trajectory and were enriched for an experimentally-191 

derived gene signature associated with acute (1hr) B cell stimulation, while preGC B cells more closely 192 

resembled intermediate level B cell stimulation (3-6hr) (Fig3G) (19). This confirms that these B cells 193 

represent a secondary activation state following antigen encounter and before formation of GCs. Our 194 
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reconstruction of B cell activation therefore provides a valuable framework to study these dynamic B 195 

cell states in vivo.  196 

 197 

While it was long held that CSR occurs exclusively within the GC, several studies in mice have 198 

demonstrated that CSR can occur prior to the GC response (20-22). However, the precise B cell state 199 

in which this occurs has proved elusive in humans. Our reconstruction of in vivo human B cell activation 200 

revealed a surprising enrichment of genes associated with CSR in preGC B cells (Fig3H-J), with similar 201 

or higher enrichment compared to LZ GC B cells which are canonically the site of CSR. One notable 202 

example was APEX1/APE1 which is required for CSR and was expressed mostly by non-GC B cells, 203 

with the exception of a small number of GC B cells (22) (FigS12B). Although expression levels of AICDA 204 

were low (Fig2H), our analysis of the preGC and LZ GC transition revealed other genes mechanistically 205 

linked with CSR (23-28), including those capable of binding switch region sequences within the IgH 206 

locus, interacting with CSR machinery or regulating AICDA/AICDA stability (Fig3K). Other genes of 207 

interest included miR155HG and transcription factors BATF and IRF4, known B cell-intrinsic regulators 208 

of GC formation in mice (29-31) and the poorly understood transcription factor BHLHE40 that is capable 209 

of binding to the major regulatory regions at the IgH locus (FigS13). Although we observed very few 210 

switched preGC B cells (Fig2G,3L) and did not observe any preGC B cells concurrently expressing 211 

multiple isotypes with identical VDJ sequences based on analysis of high-confidence scVDJ 212 

sequences, we found that expression of IgH germline transcripts (GLTs), which is essential for CSR to 213 

take place at the IgH locus, peaks in preGC cells (Fig3M).  We could also detect some coding IGHG 214 

scRNA-seq expression in unswitched preGC B cells (FigS12C), although this appeared to be at too low 215 

a level in single cells to enable reconstruction of high-quality scVDJ contigs. Intriguingly, these 216 

observations in human tonsil are consistent with GLT transcription peaking and CSR occurring prior to 217 

GC formation in mouse models (22). This suggests the possibility that the preGC B cell state may be 218 

primed to undergo CSR before formation of the GC response, although our observations do not 219 

preclude CSR occurring within the GC as well.  220 

 221 
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Antibody-based selection of germinal centre B cells at single-cell resolution 222 

CSR has the potential to influence the antibody-based selection of B cells within GC reactions as a 223 

consequence of differential signalling through the membrane-bound immunoglobulin BCR, but studying 224 

these dynamics is challenging in vivo. We therefore used our paired single-cell transcriptomes and VDJ 225 

antibody datasets to dissect the gene expression linked with antibody-based selection during the GC 226 

response.  227 

 228 

Although GC B cells cycle between physically distinct light and dark zones we found that many GC B 229 

cells exist in a continuum between these two states (Fig4A-B), similar to previous studies (16, 32), 230 

except for FCRL3high and prePB cells that are transcriptionally distinct (Fig2F, 4C). These sub-231 

populations of GC B cells also exhibit different class switching patterns, with prePB cells more frequently 232 

expressing class-switched isotypes and FCRL3high GC cells retaining expression of IgM/IgD (Fig2G, 4D, 233 

S8). Intriguingly, expanded B cell clones containing FCRL3high GC cells were almost exclusively IgM+ 234 

(Fig4E, FigS9), suggesting that antibody class may be linked with a specific gene expression program 235 

and cell fate, or vice versa. 236 

 237 

We next leveraged our paired single-cell VDJ and transcriptomic datasets to stratify all non-cycling GC 238 

B cells (and excluding prePB and FCRL3high populations) based on their antibody SHM frequencies as 239 

a proxy for affinity (Fig4F). GC B cells with high SHM were significantly enriched with gene signatures 240 

of high affinity antigen-binding B cells (11), higher expression of the B cell maturation marker CD27 and 241 

larger clone sizes (Fig4F), reflecting increased expansion and maturation based on BCR affinity. We 242 

detected very few B cells expressing non-functional IgH sequences (Fig4F) and apoptotic cells failed 243 

to generate sufficiently high quality transcriptomic data or were removed due to elevated mitochondrial 244 

content. GC B cells with high or low SHM had many differences in gene expression (Fig4G, TableS5), 245 

consistent with high and low affinity binding events differentially regulating GC B cells (11). However, 246 

these SHM gene signatures were very similar to gene signatures for switched or unswitched GC B cells 247 

(Fig4G, TableS6), as predicted given lower average SHM frequencies of IgM+ GC B cells (Fig1D). 248 

 249 
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To overcome the confounding influence of maturation state on examining isotype-specific gene 250 

expression, we compared GC B cells with matched SHM levels expressing different antibody classes. 251 

This revealed that switched GC B cells were enriched for genes required for cell survival, BCR 252 

signalling, antigen presentation, immune responses and metabolism, as well as other important 253 

signalling pathways (Fig4H-I, TableS7). Switched GC B cells also had evidence of increased signalling 254 

in response to T cell-derived cytokines such as IL4, TGFβ, IFNγ and CD40LG, or signalling through 255 

different toll-like receptors (TLR) (Fig4H), consistent with them receiving more T cell help.  256 

 257 

Several genes involved with GC confinement or B cell niche homing were up-regulated in IgG+ and IgA+ 258 

GC B cells, such as genes required for CXCL12-mediated migration to GCs (LCP1, MYO1E) (33, 34) 259 

and GC confinement receptor P2RY8 (35), indicating that switched B cells may be more likely to remain 260 

in the GC for longer. This could explain their higher rates of SHM. Most gene expression differences 261 

were comparable between IgG+ and IgA+ B cells (Fig4I, S14) and we identified few significant or 262 

meaningful differences for subclass-specific B cells (FigS14, TableS8). One interesting exception was 263 

the specific expression of CLEC16A in IgA+ GC B cells given that this gene is associated with a selective 264 

IgA immunodeficiency (36). Finally, we observed many differences in the expression of transcription 265 

factors between class-specific GC B cells (Fig4I). IgG+ B cells expressed higher levels of BCL6, XBP1 266 

and ID3 that may increase their ability to reside in the GC or differentiate to plasma cells, while IgM+ 267 

cells had higher levels of BACH2 that represses plasma cell differentiation (11, 37-39). We also found 268 

differential expression of other factors (LMO2, TOX, BCL11A, CUX1), raising the question of their role 269 

in the unique transcriptional wiring of switched and unswitched B cells within the GC.  270 

 271 

Our single-cell resolution of the GC response allowed us to uncouple antibody affinity and class and 272 

dissect differential contributions of these two critical arms of the B cell repertoire in shaping B cell fate 273 

and function in the GC. These analyses suggest varying abilities of switched and unswitched B cells to 274 

survive and reside in the GC and establish that in addition to BCR affinity, antibody-based selection in 275 

the GC can be shaped by whether a B cell has undergone CSR. 276 

 277 
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Diverse MBC states in human tonsils 278 

Maturation state and antibody class were linked to specific gene expression by GC B cells, potentially 279 

through membrane-specific isoforms of immunoglobulin as part of the BCR. In contrast to plasmablasts, 280 

MBCs retain BCR expression of which the isotype may influence the phenotypic properties of different 281 

MBC subsets (40), the full diversity of which remains unknown. We therefore sought to better define 282 

the heterogeneity within the MBC pool in human tonsils and determine whether antibody class 283 

expression by MBCs might be linked with different functional abilities or subsets.  284 

 285 

A significant proportion of MBCs in paediatric human tonsils are unswitched (Fig1B, 2G). To examine 286 

potential differential gene expression across class-switched MBC subsets we generated paired single-287 

cell transcriptomics and VDJ repertoires for all (n=2) or IgM-depleted (n=4) MBCs (Table S1). Dataset 288 

integration and quality control provided 21,595 high-quality MBC single-cell transcriptomes that we 289 

annotated with 11 clusters reflecting different MBC subsets and states (Fig5A-C), all of which lacked 290 

marker gene expression for naïve or GC B cells (FigS15A). In addition to tissue-resident FCRL4+ MBCs 291 

previously identified (Fig2) (41), we annotated two rare CR2/CD21low MBC subsets that appeared to 292 

resemble atypical MBC populations described in varied tissues and disease states (42-44) (Fig5A-C, 293 

S15B). The CD21low 2 cluster shared several features with atypical FCRL5high MBCs (44), such as high 294 

expression of inhibitory receptors (CD22) and genes involved in antigen presentation (CIITA) (Fig5C). 295 

Otherwise, the majority of MBC diversity within human tonsils reflected differences in cellular state or 296 

activity rather than distinct cell types, such as heat shock protein (HSP)-related and IFN-related gene 297 

activity (Fig5A-C, S15C). We also identified multiple activation states (Activated1/2), including MBCs 298 

with similar gene expression to naïve preGC cells and an enrichment for CSR genes (Fig5C, S15D-E), 299 

that we label as preGC MBCs. We also identified an FCRL3high MBC state similar to the FCRL3high GC 300 

population (Fig5C, S15D) and similar MBC populations could also be detected in lymph nodes and 301 

spleen, albeit at varying frequencies (FigS15F). This suggests that these annotated MBC populations 302 

may be widely shared functional states spanning multiple B cell fates and organ systems.  303 

 304 
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We next examined whether class-switched and unswitched MBCs exhibit different gene expression 305 

networks that might reflect unique functional abilities (45). We found little evidence that antibody class 306 

contributed towards the likelihood of an MBC to exist in a given state, with the exception of FCRL3high 307 

MBCs which, similar to FCRL3high GC cells, were predominantly IgM+ by both scVDJ and flow cytometry 308 

analysis (Fig5A-B, S8, S16A). Intriguingly, an FCRL3high MBC gene signature was enriched in IgM+ cells 309 

across all MBC clusters (FigS16B), further supporting a close relationship between IgM expression and 310 

this cell state.  311 

 312 

Transcriptional wiring of unswitched MBCs underlies predisposition to form secondary GCs 313 

Comparison of switched and unswitched MBCs with equivalent SHM levels, as MBCs expressing 314 

switched isotypes tend to have higher SHM frequencies (FigS16C), confirmed widespread gene 315 

expression differences that were independent of MBC subset or state (Fig5D-F). This indicates a 316 

specific transcriptional wiring of MBCs dependent upon their antibody class. Unswitched MBCs were 317 

broadly enriched for genes involved in cytokine-mediated signalling, activation, antigen presentation 318 

and migration (Fig5E-F), which may reflect the increased capacity of IgM+ MBCs to re-initiate GC 319 

reactions as part of a recall memory response (45-47), an essential component of long-term B cell-320 

mediated immunity. Counterintuitively, IgM+ MBCs were also enriched for anti-proliferative and 321 

apoptotic gene pathways (Fig5E), as well as many genes proposed to regulate or inhibit B cell 322 

activation, such as FCRLA, FCRL2, FCRL3, CBLB, CD72 and SIGLEC10 (48-52). This suggests a fine 323 

regulatory balance at the transcriptional level may control the activation threshold of unswitched MBCs.  324 

 325 

Unswitched MBCs expressed higher levels of POU2F2 (OCT2) and FOXP1 than class-switched MBCs 326 

(Fig5F), which coordinate the capacity of B cells to respond normally to antigen receptor signals and 327 

directly repress key regulators of plasma cell differentiation respectively (53, 54). This is consistent with 328 

switched IgG+ MBCs being more likely to differentiate into plasma cells, while unswitched IgM+ MBCs 329 

are more likely to re-enter or form secondary GC responses to gain higher affinity (45-47). Indeed, 330 

unswitched MBCs in the preGC cluster were significantly enriched for gene signatures linked with GC 331 

entry and CSR compared to switched MBCs in the same cluster (Fig5G-H). This supports a model 332 
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where unswitched MBCs are more likely to form secondary GC responses than switched MBCs, and 333 

that these unswitched MBCs are primed to undergo class switching during this process. 334 

 335 

Discussion 336 

High affinity antibodies are generated in SLOs, but the dynamic nature of this response has presented 337 

significant challenges to understanding human B cell-mediated immunity in vivo. By combining bulk 338 

antibody repertoire analysis with single-cell transcriptomics we have generated a detailed resource of 339 

human B cell maturation and the GC reaction. This enabled us to explore diverse B cell states, 340 

reconstruct B cell activation dynamics, dissect the relationship between antibody class and functional 341 

capability of GC and MBC subsets, and reveal an unappreciated heterogeneity in tonsillar MBC 342 

population. These integrated analyses highlight how the outcome of CSR can influence B cell fate and 343 

function, and provide a detailed framework through which to view B cell-mediated immune responses. 344 

 345 

The humoral immune response exhibits compartmentalisation that divides the gut-associated lymphoid 346 

tissue from blood-rich tissues such as spleen, bone marrow and lung (55). Tonsils are positioned in the 347 

upper airway and are highly exposed to antigen relative to encapsulated lymph nodes. Memory 348 

responses generated in tonsillar GCs seed the airway mucosa (56). Tonsils therefore form an important 349 

component of both systemic and mucosal immunity. Apart from known tonsillar-specific B cell 350 

populations such as tissue-resident FCRL4+ MBC and IgD+ plasma cells (Fig2, S4), we found that B 351 

cell populations in the human tonsil are transcriptionally highly similar to those in lymph nodes, although 352 

we cannot exclude the possibility that functional differences or unique populations may exist between 353 

tissues. Nonetheless, tonsils provide a useful and largely representative model for studying the dynamic 354 

GC responses of SLOs.  355 

 356 

Although first histologically observed over a century ago, many questions remain about how B cells 357 

enter, experience and exit the GC reaction (1, 2, 7). Understanding the early events that facilitate GC 358 

entry by human B cells could provide new targets for adjuvants during vaccination or other 359 

immunotherapies. We mapped gene expression dynamics of the early stages of B cell activation that 360 



14 
 

correspond to antigen-dependent signalling through the BCR and the subsequent transition to a 361 

transcriptionally-distinct preGC state, the latter of which is presumably under the regulation of cognate 362 

antigen-specific T helper cells. Recent spatial mapping of this specific preGC B cell state in the human 363 

lymph node has predicted that these cells are distinct from existing GCs (15), suggesting that they are 364 

likely forming new GC structures. This preGC state has many features suggesting it is primed to 365 

undergo class switching (Fig3), although we were not able to directly detect switch events themselves 366 

possibly due to the rarity of this occurrence. Alternatively, CSR may be linked with a rapid change from 367 

preGC to the LZ GC transcriptional state that is very dynamic and difficult to observe. Nonetheless, this 368 

B cell state appears to agree with observations in mouse models that B cells can undergo class 369 

switching before formation of GCs (20-22). If class switching is indeed capable of occurring before GC 370 

formation, this could then shape antibody-based selection dynamics in the GC (Fig4). 371 

 372 

Within the GC, B cell survival and selection is dependent on antigen binding to the BCR and its 373 

downstream signalling pathways (6). By using single-cell transcriptomics paired with BCR sequence 374 

analysis we uncouple antibody class, SHM frequency and B cell phenotype. We show that switched 375 

GC B cells, in contrast to IgM+ cells, have gene expression patterns consistent with increased BCR 376 

signalling and a greater capacity to remain within the GC and acquire T cell help to undergo additional 377 

SHM and increase their affinity. If CSR does indeed occur prior to GC entry, as we and others suggest 378 

(20-22), these data support that the ability of a B cell to acquire high affinity is dictated by the outcome 379 

of a specific CSR “checkpoint” at the preGC stage. This would explain our observation that isotype-380 

matched MBCs have comparable SHM frequencies to plasmablasts, in contrast to the prevailing 381 

paradigm that higher affinity GC B cells preferentially differentiate towards the plasmablast fate whereas 382 

lower affinity clones seed the memory compartment (3, 11, 57). While we were not able to directly 383 

quantify antigen-specificity or antibody affinity given the highly polyclonal nature of tonsillar B cells, a 384 

recent study in mice found comparable antibody affinities between antigen-specific MBC and 385 

plasmablasts following influenza infection (58). The differences in affinity between these populations 386 

may instead be explained by the likelihood of whether they retained IgM expression prior to entering 387 

affinity maturation in the GC. This is also relevant during the secondary activation of MBCs, as IgM+ 388 
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MBCs appear more primed for CSR and GC entry, which may be important to provide a higher affinity 389 

secondary response. Finally, our discovery of a specific unswitched gene expression signature across 390 

different B cell states, exemplified by the FCRL3high B cell state, raises interesting questions about how 391 

this unique transcriptional wiring is regulated and how it may contribute to their function. It will also be 392 

of interest to determine the relevance of the distinct lack of class switching across FCRL3high containing 393 

clones, for example whether they arise as a consequence of prolonged antigen exposure and/or in 394 

response to particular antigens. 395 

 396 

Although the direct mechanisms shaping the class-specific gene expression differences remain to be 397 

elucidated, variations in the immunoglobulin tail tyrosine (ITT), linker flexibility or glycosylation sites 398 

between IgM and other antibody isotypes may all contribute to differential BCR signalling (8-10). The 399 

enhanced BCR signalling capacity conferred by the ITT has been linked to the propensity of IgG+ 400 

memory B cells to differentiate into plasmablasts (46). Indeed, memory B cells were more enriched for 401 

IgA (which lacks an ITT) than PBs, although those IgA MBC clones were less clonally expanded than 402 

comparable PB clones. Although our study lacks spatial information about these different B cell 403 

populations, it is interesting to speculate that these repertoire-based differences between MBC and PBs 404 

might be linked to different spatial locations within tonsillar tissue that could be under greater or less 405 

influence of mucosal cytokines that drive IgA class switching. A limitation of our study, like others in 406 

human subjects, was that we could not compare multiple tissues in the same individual. We observed 407 

differences in isotype frequencies and SHM in tonsil compared to mesenteric lymph nodes which may 408 

relate to how different tissue environments shape the local antibody repertoire (e.g. pathogen exposure 409 

and cytokine production), but could also represent enrichment of antigen-experienced cells due to the 410 

relatively advanced age of lymph node patient donors. Of note, despite differences in the relative 411 

frequencies and clonal diversities of IgA and IgG in MBC versus plasmablasts in tonsillar repertoires, 412 

we did not identify many differences in gene expression between IgG+ and IgA+ B cells, or between 413 

subclass-specific B cells, which may reflect the need to increase the power of future studies to identify 414 

potentially subtle gene expression differences between the less abundant isotypes. While human tonsils 415 

are a useful tissue with which to examine active GC responses, it will be of interest to compare and 416 
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contrast the class-specific gene expression differences we observe with those that might exist in other 417 

tissues in both health and disease to investigate how the local cellular and cytokine environment under 418 

the influence of different patterns of microbial exposure can influence antibody-based selection in 419 

different contexts or diseases states.  420 

 421 

Finally, our profiling of human tonsillar MBCs revealed diverse states reflecting different activation, 422 

signalling and functional potential. The upstream regulators of these different transcriptional states 423 

remains unclear from our analyses, but these unique gene expression patterns are likely to reflect the 424 

combined influence of extrinsic microenvironmental cues and cell intrinsic identity. We found that 425 

switched MBCs expressed genes consistent with being primed to undergo plasma cell differentiation 426 

whereas the more abundant unswitched MBC exhibited gene expression making them more likely to 427 

re-enter GC reactions. Given an emerging appreciation for heterogeneity within both human and mouse 428 

MBC populations (14) and building on evidence for functionally distinct MBC populations enriched for 429 

different FCRL expression patterns (41, 44), some of which we observe here, our single-cell 430 

characterisation of different MBC populations and activation states provides a valuable dataset to 431 

interrogate the potential relevance for such diverse populations in mediating humoral immunity and 432 

immune-related disorders.   433 

 434 

Materials and Methods 435 

Study Design 436 

This study aimed to characterise antibody repertoires of human tonsillar B cell states with bulk antibody 437 

repertoire sequencing of sorted B cell populations combined with an unbiased characterisation of the 438 

gene expression and repertoires using single-cell transcriptomics and VDJ sequencing. The study used 439 

tonsil samples from paediatric patients (>3yo) who were undergoing routine tonsillectomy, numbers of 440 

samples per experiment are reported in figure legends. Bulk and single-cell antibody repertoires were 441 

analysed together to examine subset-specific features of antibody repertoires and increase the power 442 

to identify clonally-related B cells in the single-cell VDJ-seq assay. Immune cell populations were 443 

identified by the unbiased clustering of scRNA-seq datasets and annotation with known and novel gene 444 
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expression markers and antibody repertoire features for B cell subsets. Novel populations were 445 

examined further by flow cytometry. Pseudotemporal ordering was performed to examine the 446 

relationship between different B cell maturation stages. To test the hypothesis that antibody class is 447 

linked with B cell fate and function, we compared single-cell transcriptomes of antibody class-specific 448 

B cells with matched somatic hypermutation frequencies (as a proxy for affinity) and performed 449 

differential gene expression and pathway enrichment analyses. 450 

 451 

Human ethics and tissue collection 452 

Paediatric tonsillectomy patients at Royal London Hospital were consented with approval from North 453 

West/Greater Manchester East Research Ethics Committee (17/NW/0664). Tonsillar tissue was 454 

homogenised with the gentleMACSTM Dissociator and mononuclear lymphocytes purified using Ficoll-455 

PaqueTM gradients. Cells were processed immediately for single-cell library preparation (after ensuring 456 

high cell viability by TrypanBlue staining) or cryopreserved in FCS with 10% DMSO at -70°C. 457 

 458 

Sorting B cell subsets 459 

Cells were stained with Zombie NIR™ Fixable Viability Kit (BioLegend) to label dead cells, blocked with 460 

human FcR Blocking Reagent (Miltenyi Biotec) and stained with CD19-APC, CD38-PE-Cy7, CD27-461 

PacificBlueTM, IgD-PerCP-Cy5.5, and IgM-FITC (TableS10). For bulk repertoires, two replicates of 462 

250,000 live B cells were sorted using a BD FACSAriaTM IIIu before RNA extraction: total (CD19+), naïve 463 

(CD19+IgD+CD38-), germinal centre (CD19+IgD-CD38+), memory (CD19+IgD-CD38-), and plasmablasts 464 

(CD19+IgD-CD38++). For single-cell RNA-seq of sorted MBCs, live CD19+IgD-CD38- (n=2) or live 465 

CD19+IgD-CD38-IgM- (n=4) cells were sorted. 466 

 467 

Bulk BCR repertoire sequencing 468 

RNA was isolated using the RNAqueous™-Micro Total RNA Isolation Kit (ThermoScientific) 469 

supplemented with β-mercaptoethanol. Immunoglobulin heavy (IgH) chain sequences were amplified 470 

as previously described (5) (Supplementary Methods). Briefly, 50-100 ng RNA was annealed to pooled 471 

IgH constant region primers containing unique molecular identifiers (UMIs) of 10 or 12 nucleotides at 472 
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72°C for 5 min before incubation on ice for 2 min. First-strand cDNA synthesis was performed using 473 

SuperScript IV reverse transcriptase (ThermoFisher Scientific) before second-strand cDNA synthesis 474 

with Phusion® High-Fidelity DNA Polymerase (NEB) and UMI-containing variable region primers. 475 

Double-stranded cDNA was purified using Ampure XP beads (BeckmanCoulter) before library 476 

amplification with NEBNext UltraII Q5 Master Mix (NEB). Libraries were quantified by Qubit™ dsDNA 477 

HS Assay Kit prior to Illumina MiSeq sequencing with paired-end 301bp reads. 478 

 479 

Single-cell library preparation, sequencing and alignment 480 

Tonsillar immune cells (n=7) or FACS-sorted MBCs (n=6) single-cell libraries were generated with the 481 

10x Genomics Chromium Single Cell 3' (v2; n=1) or 5' and V(D)J (v1; n = 6) assays (TableS1) prior to 482 

sequencing on the Illumina NextSeq500 with 26/8/134 bp (scRNA) or 155/8/155 bp (scVDJ) read 483 

configurations. scRNA-seq basecall files were processed with CellRanger (v3.0.0) to provide FASTQ 484 

files for mapping to GRCh38 (release 92) to produce gene-by-cell expression matrices. scVDJ datasets 485 

were processed with CellRanger vdj using the refdata-cellranger-vdj-GRCh38-alts-ensembl-2.0.0 486 

reference. Incomplete or low quality IgH contigs, or those with insufficient coverage of constant regions 487 

to ensure accurate isotype assignment between closely related subclasses, were filtered from 488 

subsequent analyses. 489 

 490 

Integrated repertoire analysis 491 

Bulk VDJ sequencing reads were processed with pRESTO (v0.5.10) (59) and combined with scVDJ-492 

derived IgH sequences (Supplementary Methods). Briefly, reads with mean Phred scores >25 493 

underwent UMI alignment using MUSCLE (v3.8.31) (60) and UMIs with >3 unique reads were used to 494 

assemble consensus VDJ sequences. Duplicate sequences within each biological sample were 495 

collapsed before integrating with filtered scVDJ contigs from cellranger. All IgH sequences were 496 

annotated with AssignGenes.py (ChangeO v0.4.5) (61) and IgBLAST (v1.12.0) (62) before correction 497 

of ambiguous V gene assignments using TIgGER (v0.3.1) (63). Clonally-related sequences were 498 

identified using DefineClones.py with nearest neighbour distance threshold determined by 499 

distToNearest (Shazam v0.1.11) (61). Germline sequences were inferred using CreateGermlines.py 500 
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and SHM frequencies calculated with observedMutations. SHM frequencies >0.02 were annotated as 501 

“High”, 0-0.02 as “Low” and 0 as “None”. For bulk BCR repertoire analysis, scVDJ sequences were 502 

excluded, providing ~1.5 million high-confidence unique IgH sequences. Lineage trees of expanded 503 

clones were constructed via maximum parsimony using buildPhylipLineage (Alakazam v0.2.11) (61). 504 

To quantify class switch hierarchies, the observed frequency of direct edges between unique 505 

sequences of different isotypes were counted and normalised to the frequency of such transitions 506 

expected by chance (calculated by iterative (k=100) sampling of isotype frequencies). scVDJ 507 

sequences were integrated with scRNA-seq datasets as described previously (64). Diversity analyses 508 

were performed with Alakazam. Mean clonal diversity scores, SHM and isotype frequencies for each 509 

donor were compared using Student’s t test.  510 

 511 

Single-cell RNA-seq processing and analysis 512 

Cellranger expression matrices were used to quantify mitochondrial percentages and generate summed 513 

Ig and TCR VDJ counts before these genes were removed before processing with Seurat (v3.0.3) (65) 514 

with log transformation, normalisation, cell cycle prediction and variable gene identification 515 

(Supplementary Methods). A preliminary integration of unsorted immune samples or sorted MBC 516 

samples was performed using FindIntegrationAnchors and IntegrateData (3000 genes) regressing out 517 

cell cycle scores and mitochondrial gene expression, principle component analysis (PCA) and 518 

preliminary clustering. One preliminary cluster enriched with high frequency of predicted doublets from 519 

DoubletFinder (v2.0.1) (66) was removed. Following this quality control, all samples were integrated 520 

using the unsorted immune samples as reference with 4000 highly variable genes before regressing 521 

cell cycle and mitochondrial gene expression, PCA and identifying broad cell type lineages (B cell, T 522 

cell and non-lymphoid cells) which were then reclustered separately. Clusters were manually annotated 523 

using differential gene markers from FindAllMarkers and scVDJ antibody features where relevant. 524 

Uniform Manifold Approximation and Projection (UMAP) was used for visualisation.  525 

 526 

Integration with lymph node and spleen datasets 527 
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Cellranger gene expression matrices from human lymph nodes (n=7) and spleen (n=1) (64, 67) were 528 

processed as above, before integration with the unsorted tonsillar immune cell gene expression objects 529 

using FindIntegrationAnchors and IntegrateData (Seurat) with the unsorted tonsillar immune samples 530 

as reference with 4000 highly variable genes before regressing cell cycle and mitochondrial gene 531 

expression, PCA and unbiased clustering. Clusters were annotated based on a consensus of previous 532 

cell type annotations and confirmed by differential gene expression analysis. Processed scVDJ 533 

metadata from mesenteric lymph nodes (n=2) were obtained from (64). Lymph node and spleen 534 

memory B cells (B_MBC and B_MBC_FCRL4) were annotated with high resolution tonsillar memory B 535 

cell subsets using FindTransferAnchors and TransferData with 3000 variable features (Seurat). 536 

 537 

Gene expression and signature enrichment analysis 538 

Differential gene expression for antibody class-specific or somatic hypermutation frequency for GC B 539 

cells or class-switched MBCs was performed using FindAllMarkers with Benjamini-Hochberg false 540 

discovery rate (FDR) correction. Genes were deemed significantly different if FDR <0.05, average log 541 

fold change >0.1 and the gene was detected in >20% of cells in that group. Ingenuity Pathway Analysis 542 

(Qiagen) was performed using avg_logFC values of all genes significantly enriched in at least one class. 543 

Gene ontology enrichment analyses were otherwise performed with Metascape (68). Single-cell gene 544 

signature scoring was performed with AUCell (v1.5.5) (69), including a manually curated shortlist of 545 

CSR-related genes (4), high and low affinity GC B cells (GSE73729) (11) and anti-IgM stimulation of B 546 

cells (GSE41176) (19). Affinity signatures were derived by quantifying RNA-seq transcript counts using 547 

Salmon (v1.0.0) (70), collapsing protein-coding transcripts with tximport (v1.10.1) (71), identifying 548 

significant gene expression differences using DESeq2 (v1.22.2) (72) with a threshold of fold change > 549 

1.5 and FDR < 0.05  and converting mouse gene IDs to human with bioMart (v2.38.0) (73). Genes up-550 

regulated following α-IgM treatment were identified from microarray data with Geo2R (74). preGC and 551 

FCRL3high signatures used the top 50 most significantly enriched genes per cluster. Unless indicated 552 

otherwise, Wilcoxon Ranked Signed Sum test was used to test for significant differences. 553 

 554 
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Cell-cell communication using CellPhoneDB 555 

To examine the expression of ligand-receptor pairs between different scRNA-seq clusters raw count 556 

matrices were analysed with “statistical_analysis” option of CellPhoneDB (v2.0.6) (75). The number of 557 

unique significant ligand-receptor co-expression pairs between each cell type were determined and 558 

interactions of interest visualised by the means of average expression of gene 1 in cell type 1 and gene 559 

2 in cell type 2 indicated by colour and p values indicated by circle size. 560 

 561 

RNA velocity and pseudotemporal ordering 562 

Spliced and unspliced transcripts were quantified for tonsil immune samples with velocyto (v0.17.10) 563 

(17) and integrated with raw counts of annotated B cell scRNA-seq in Scanpy (v1.4) (76) using scVelo 564 

(v0.1.23) (18). Velocyto-derived counts were processed, filtered and normalised prior to velocity 565 

estimation using a dynamical model with scVelo. Velocities were projected and visualised onto UMAP 566 

embedding. Velocity-based pseudotime reconstruction was performed using latent time recovery of 567 

single-cell velocities with tl.recover_latent_time and tl.velocity_pseudotime of the Naïve, Activated, 568 

preGC and LZ GC B cell clusters. Dynamic gene expression changes were examined using 569 

tl.rank_velocity_genes for velocity-based sub-clustering (res=1) and top 200 genes per sub-cluster 570 

(ribosomal genes removed) were collapsed to unique genes for heatmap visualisation with smoothed 571 

scores. Gene expression or signature scores were quantified across pseudotime as smoothed 572 

normalised counts with geom_smooth() ±95% CI. For pseudotemporal analysis of the continuum of GC 573 

B cell states (Fig4), all GC B cell clusters were analysed with diffusion-based pseudotime (tl.dpt, 574 

Scanpy) independent of RNA velocity using default settings. Partition-based graph abstraction (PAGA) 575 

analysis was performed with Scanpy using default settings (threshold = 0.05) with all clusters except 576 

for MBCs due to their close transcriptional similarity with naïve B cells. 577 

 578 

Quantitation of IgH germline transcripts 579 

All reads mapped to the IgH locus (chr14:105540180-105879151) were quantified with dropEst (v0.8.6) 580 

(77) against a custom GTF file containing I promoter germline transcript coordinates. Counts were 581 

log10-normalised and scaled in Seurat before class-specific counts were summed. 582 
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 583 

Flow cytometry identification of preGC and FCRL3high B cells 584 

Cryopreserved cells were thawed, washed and blocked with human FcR Blocking Reagent (Miltenyi 585 

Biotec) then stained with a panel of fluorophore conjugated antibodies (Table S10) and DAPI (Sigma) 586 

to discriminate live and dead cells. Samples were run on a Cytek Aurora spectral flow cytometer using 587 

SpectroFlo (Cytek) and unmixed before analysis. Data were analysed using FlowJo v10 (Treestar) and 588 

gates were set using fluorescence minus one (FMO) controls. 589 

 590 

Immunohistochemistry 591 

Formalin-fixed paraffin-embedded tonsil samples were deparaffinized in xylene and rehydrated through 592 

a series of ethanols to water. Endogenous peroxidase was blocked with 3% hydrogen peroxide before 593 

heat-mediated antigen retrieval with a citrate-based unmasking buffer (Vector Labs) at 120°C. 3 µm 594 

sections were incubated for 40 min at RT with anti-APE1 (1:1000; HPA002564; Sigma) or anti-FCRL3 595 

(1:100; HPA048022; Sigma) before using the Super-sensitive–Polymer HRP system (Biogenex) with 596 

purple chromogen VIP (Vector Labs) and hematoxylin as a nuclear counterstain. Slides were scanned 597 

(Pannoramic250 Flash) before soaking in xylene to de-coverslip before rehydration through ethanol to 598 

water. De-staining and stripping of primary antibodies and heat-labile chromogen was achieved by a 599 

subsequent round of heat-mediated antigen retrieval. Anti-CD20 (1:500; M0755; Dako) was incubated 600 

for 40 min at RT, followed by detection, visualization and scanning as before. Negative controls were 601 

performed by treating sequential sections as above but without anti-CD20 staining to confirm complete 602 

stripping. Images were prepared using CaseViewer (3DHistTech). 603 
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Figure Legends 856 

Figure 1. Subclass- and subset-specific features of human tonsillar B cell repertoires. 857 

A) Sorting strategy to isolate naïve, germinal centre (GC), memory (MBC) and plasmablasts (PB) from live CD19+ human 858 

tonsillar B cells for bulk repertoire sequencing. 859 

B) Mean frequency of antibody subclasses within each B cell subset across donors (n=8 donors).  860 

C) Mean frequency of antibody SHM levels within each B cell subset across donors. 861 

D) Mean SHM frequencies per donor for subclass-specific antibody sequences within each B cell subset. Isotypes are sorted 862 

in order of the IgH locus. p values denote result of Student’s T test. 863 

E) Mean clonal diversity scores per donor of subclass- and subset-specific B cell clones. p values denote result of Student’s 864 

T test. 865 

F) Frequencies of switched subclass sequences per donor within each B cell subset. p values denote result of Student’s T 866 

test. 867 

G) Mean frequency of antibody subclasses for expanded clones spanning different B cell populations. For each class of 868 

clone, subset-specific members are examined (groups at top).  869 

H) Observed/expected frequencies for isotype pairs detected in reconstructed phylogenies of clonally-related sequences for 870 

all B cell clones (left) or subset-specific sequences. Antibody subclasses are ordered according to the IgH locus. nd = not 871 

detected. 872 

 873 

Figure 2. A single-cell atlas of human tonsillar immune cells to understand B cell maturation. 874 

A) Schematic of tonsillar immune cell isolation followed by single-cell transcriptomics and antibody repertoire sequencing. 875 

B) UMAP projection of tonsillar immune scRNA-seq and scVDJ data (32,607 cells; 7 donors). 876 

C) UMAP projections of tonsillar T cell (8,753 cells) and non-lymphoid cell (363 cells) scRNA-seq clusters. 877 

D) UMAP projection of tonsillar B cell (25,728 cells) scRNA-seq clusters. 878 

E) Schematic of scVDJ and bulk repertoire integration analysis strategy. 879 

F) Mean marker gene expression for B cell subsets. Dot size depicts frequency of cells a gene is detected in. 880 

G) Relative scVDJ-derived antibody subclass frequencies in different B cell states. 881 

H) SHM frequencies of scVDJ-derived antibody genes in different B cell states. 882 

I) Clonal diversity scores (±SD) of B cell clones identified in scRNA-seq dataset. 883 

J) Number of members per clonotype in B cell subsets from integrated repertoire analysis. 884 

K) Co-occurrence of expanded scVDJ clones across B cell subsets.  885 

L) Clonal relationships between scVDJ and sorted B cell subset repertoires. 886 

M) Relative frequencies of B cell subsets separated by reason for tonsillectomy. Obstructive sleep apnoea (OSA; n=2), 887 

recurrent tonsillitis (RT; n=3), RT+OSA (n=2). 888 

 889 

Figure 3. Mapping dynamics of human B cell activation and GC entry. 890 

A) Marker gene expression for activated B cells in scRNA-seq. 891 

B) Frequency of significant predicted ligand-receptor pair interactions between major B cell states, T cells and antigen-892 

presenting cells (APCs).  893 

C) Selected ligand–receptor interactions between B cells and APCs, CD4+ T cells and TfH cells.  894 

D) Grid-based visualisation of tonsillar B cell RNA velocities. Arrow size conveys strength of directionality.  895 

E) Relative frequencies of B cell types in a velocity-based pseudotime reconstruction of B cell activation and GC formation.  896 

F) Heatmap depicting dynamic gene expression across velocity-based pseudotime reconstruction in E). 897 

G) Anti-IgM-stimulation gene signature scores (±95% CI) across velocity-based pseudotime.  898 
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H) Expression of CSR genes through velocity-based pseudotime. 899 

I) CSR gene signature score through velocity-based pseudotime. 900 

J) Relative frequencies of cells with high CSR signature scores in different B cell states (n = 7). p denotes Student’s T test. 901 

K) Expression of genes implicated in CSR across B cell subsets.  902 

L) Antibody subclass frequencies across velocity-based pseudotime. 903 

M) Expression of germline transcripts (GLT) for IgM (Iµ), IgA (Iα) and IgG (Iγ) through velocity-based pseudotime. Iα+γ denotes 904 

sum of Iα and Iγ expression.  905 

 906 

Figure 4. Resolving antibody class-dependent gene expression in GC B cells at single-cell resolution 907 

A) Diffusion-based graph visualisation and pseudotemporal ordering of GC B cell scRNA-seq populations (6,475 cells). DC 908 

= diffusion component. 909 

B) Single-cell gene expression heatmap of major GC B cell states ordered by pseudotime. 910 

C) Expression of marker genes for prePB and FCRL3high GC B cells. 911 

D) Relative frequency of class-switched FCRL3high, prePB cells and other GC B cells in scRNA/VDJ. (±SEM). p values denote 912 

result of Student’s T test. 913 

E) Percentage of unswitched members within expanded GC B cell clones. p values denote result of Wilcoxon Ranked Signed 914 

Sum test. 915 

F) High and low affinity gene signature scores for GC B cells grouped by antibody SHM frequency (2,045 cells). Also shown 916 

are CD27 expression, integrated clone size and predicted IgH functionality. p values denote result of Wilcoxon Ranked 917 

Signed Sum test. 918 

G) Log enrichment of genes in class-switched vs unswitched and high vs low SHM GC B cells. Colour denotes statistical 919 

significance. cor denotes Pearson’s Correlation coefficient. 920 

H) Enrichment (z-scores) of genes differentially expressed by class-specific GC B cells with high SHM in gene ontologies 921 

and predicted targets of cytokine signalling from Ingenuity Pathway Analysis. 922 

I) Mean expression of selected genes enriched in class-specific high SHM GC B cells. 923 

 924 

Figure 5. Diverse MBC states and antibody class-dependent gene expression. 925 

A) Clustering and UMAP visualisation of 21,595 MBC single-cell transcriptomes. 926 

B) scVDJ-derived antibody isotypes of MBC single-cell transcriptomes with high quality VDJ sequences (n=15,531 cells). 927 

C) Mean expression of top marker genes for MBC states.  928 

D) Log fold change of genes significantly enriched in switched or unswitched MBCs with high SHM. CD21low clusters were 929 

excluded due to low cell number. 930 

E) Gene ontologies for genes significantly enriched in switched or unswitched MBCs with high SHM. 931 

F) Log fold change of selected genes significantly enriched in switched or unswitched MBCs with high SHM. 932 

G) Single-cell scores for GC entry and CSR signature genesets in switched and unswitched preGC MBC with high SHM. p 933 

values denote result of Wilcoxon Ranked Signed Sum test. 934 

H) Single-cell gene expression of key CSR genes in switched and unswitched preGC MBC with high SHM. p values denote 935 

result of Wilcoxon Ranked Signed Sum test.  936 



30 
 

Figure 1 937 

 938 



31 
 

Figure 2 939 

 940 



32 
 

Figure 3 941 

 942 



33 
 

Figure 4 943 

 944 



34 
 

Figure 5 945 

 946 



35 
 

Supplementary Methods 947 

Bulk VDJ repertoire library protocol 948 

Bulk B cell repertoire libraries of immunoglobulin heavy chains (IgH) were generated as described 949 

previously (5), with minor changes. 50 to 100 ng RNA from sorted B cell subsets were annealed to a 950 

pooled set of five isotype-specific IgH constant region primers containing unique molecular identifiers 951 

(UMIs) of either 10 or 12 nucleotides at 72°C for 5 min before being immediately placed on ice for 2 952 

min. First-strand cDNA synthesis was performed using SuperScript IV reverse transcriptase 953 

(ThermoFisher Scientific) with recommended reagent concentrations and the following cycling 954 

conditions in a thermocycler: 105°C lid; 55°C 10 min; 80°C 10 min; 4°C hold. Second-strand cDNA 955 

synthesis was performed using Phusion® High-Fidelity DNA Polymerase (NEB) and six IgH variable 956 

region primers containing 10 or 12 nucleotide UMIs with the following cycling conditions: 105°C lid; 957 

98°C 4 min; 52°C 1 min; 72°C 5 min; 4°C hold. Double-stranded cDNA was then purified using (0.6X) 958 

Ampure XP beads (Beckman Coulter) before amplification with Illumina adapter-containing primers 959 

(Nextera i7 indices) and NEBNext Ultra II Q5 Master Mix (NEB) as follows: 105°C lid; 98°C 30 seconds; 960 

(98°C 10 seconds, 72°C 50 seconds) × 22 to 28 cycles; 72°C 2 min; 4°C hold. Amplified libraries were 961 

purified using (0.6X) Ampure XP beads and quantified by Qubit™ dsDNA HS Assay Kit prior to 962 

multiplexing. Libraries were sequenced with a 5% PhiX spike-in using paired-end 301 bp reads on the 963 

Illumina MiSeq. 964 

 965 

Quality control and sequence assembly of bulk B cell repertoires 966 

Raw sequencing reads from bulk VDJ libraries were processed to generate UMI-collapsed consensus 967 

VDJ sequences using pRESTO (v0.5.10) (59). Paired-end sequencing reads with mean Phred quality 968 

scores less than 25 were removed, and remaining sequences were annotated and trimmed for PCR 969 

primer and UMI sequences. UMI barcodes were then filtered by length and the presence of ambiguous 970 

nucleotides, prior to UMI alignment using MUSCLE (v3.8.31) (60). To correct for sequencing or other 971 

errors, we generated consensus sequences from UMIs with at least 3 unique sequencing reads 972 

required, prior to assembly of paired-end UMI consensus sequences into a single VDJ contig and 973 

annotation of constant region isotype using MaskPrimers.py align to correct for primer misalignment. 974 
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Duplicate VDJ sequences within each subset were collapsed using CollapseSeq.py before VDJ gene 975 

assignment and functional annotation with AssignGenes.py (ChangeO v0.4.5) (61) and IgBLAST 976 

(v1.12.0) (62). 977 

 978 

Identification of clonally-related sequences, genotype inference and calculation of IgH mutation 979 

frequencies. 980 

Following initial quality control, all single-cell VDJ sequences were combined together with bulk BCR 981 

repertoire sequences from the same donor for subsequent processing. IgH sequences were annotated 982 

using AssignGenes.py and IgBLAST before isotype class assignment prior to correction of ambiguous 983 

V gene assignments using TIgGER (v0.3.1) (61,63). Clonally-related IgH sequences were identified 984 

using DefineClones.py (ChangeO) with a nearest neighbour distance threshold of 0.0818, as 985 

determined by the mean 99% confidence interval of all 8 donors with distToNearest (Shazam v0.1.11) 986 

(61). CreateGermlines.py was then used to infer germline sequences for each clonal family and 987 

observedMutations was used to calculate somatic hypermutation frequencies for each IgH sequence. 988 

Sequences with somatic hypermutation frequencies greater than 0.02 were annotated as “High” 989 

mutation levels, those between 0 and 0.02 as “Low” mutation levels and 0 as “None”. For bulk BCR 990 

repertoire analysis in Figure 1, single-cell VDJ sequences were excluded, providing ~1.5 million high-991 

confidence and unique IgH sequences, with a median of 14 UMIs per sequence, a median of 28,918 992 

unique sequences per donor per subset and approximately 96-99% of these sequences annotated as 993 

functional by IgBlast. To quantify antibody class switch hierarchies, lineage trees for expanded 994 

clonotypes were constructed via maximum parsimony using buildPhylipLineage (Alakazam v0.2.11) 995 

(61). The observed frequency of direct edges between unique sequences of different isotypes were 996 

counted and expressed relative to the frequency of such transitions expected by chance (calculated by 997 

iterative (k=100) random sampling of isotype frequencies) within each B cell subsets. 998 

 999 

Single-cell VDJ analysis was performed broadly as described previously (64). Briefly, the number of 1000 

quality filtered and annotated IgH, IgK or IgL were determined per unique cell barcode prior to 1001 

integration with single-cell gene expression objects. If more than one contig per chain was identified, 1002 
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metadata for that cell was ascribed as “Multi”. IgH diversity analyses were performed using the 1003 

rarefyDiversity and testDiversity of Alakazam. To assess clonal relationships between cell types, co-1004 

occurrence of expanded clone members between cell types was reported as a binary event for each 1005 

clone that contained a member within two different cell types in either single-cell or bulk repertoires.  1006 

 1007 

Data quality control, processing and annotation of single-cell RNA-seq. 1008 

Gene expression count matrices from cellranger were used to calculate percentage mitochondrial 1009 

expression per cell barcode prior to mitochondrial genes being removed from gene expression matrices. 1010 

Similarly, the V, D and J gene counts for each immunoglobulin and T cell receptor were summed to 1011 

calculate an overall expression before individual genes were removed from gene expression matrices. 1012 

Counts of individual IgH constant region genes were also summed together (IgG1-4, and IgA1-A2) and 1013 

removed. Modified gene-by-cell matrices were then used to create Seurat objects for each sample using 1014 

Seurat (v3.0.3) (65), removing genes expressed in fewer than 3 cells. Cell barcodes with <1000 or 1015 

>60000 UMIs and <500 or >7000 genes detected were removed, as were cell barcodes with >30% 1016 

mitochondrial reads. Individual matrices were then log transformed, normalised by a factor of 10000 1017 

prior to predicting cell cycle phases using the CellCycleScoring command and identifying the 3000 most 1018 

variable genes within each sample using the “vst” method. A preliminary integration of all unsorted 1019 

immune cells or all sorted memory B cell datasets together was performed using 1020 

FindIntegrationAnchors and IntegrateData (3000 genes) before regressing out cell cycle scores and 1021 

mitochondrial gene expression, performing principle component analysis (PCA) and preliminary 1022 

clustering and cell type annotation. One preliminary cluster was identified to be enriched with predicted 1023 

doublets based on the results from DoubletFinder (v2.0.1) (66), and a small number of cell barcodes 1024 

with co-expression of B/T/non-lymphoid markers were removed. Following the removal of poor quality 1025 

cell barcodes based on these preliminary analyses, all normalised count matrices were integrated 1026 

together using the unsorted immune samples as a reference with 4000 highly variable genes before 1027 

scaling the integrated data and regressing cell cycle and mitochondrial gene expression, running PCA 1028 

and identifying broad cell type lineages (B cell, T cell and non-lymphoid cells) using a broad resolution 1029 

for clustering. These lineages were then separated for more detailed annotation by recomputing the 1030 
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PCA (RunPCA), nearest neighbour graph (FindNeighbors) and unbiased clustering (FindClusters). 1031 

Uniform Manifold Approximation and Projection (UMAP) was used to visualise integrated and lineage-1032 

specific datasets. B cells were annotated with scVDJ metadata from the integrated repertoire analysis 1033 

detailed above and features such as isotype frequency, SHM levels and clonal properties were used to 1034 

improve confidence of cell type annotation (such as between naïve and MBC clusters). 1035 

 1036 

Prediction of cell-cell communication using CellPhoneDB. 1037 

To evaluate potential cell-cell communication, we used CellPhoneDB (v2.0.6) (75) to examine the 1038 

expression of ligand-receptor pairs between different scRNA-seq clusters. Briefly, we exported raw 1039 

gene count matrices from Seurat, converted gene IDs to Ensembl IDs using bioMart. We re-annotated 1040 

all non-lymphoid cell type clusters as antigen-presenting cells (APCs), naïve and effector T cell groups 1041 

by CD4 or CD8 expression, Treg and Tfr as “Treg” and rare GC subsets (prePB and FCRL3high) as “GC” 1042 

and exported cell type metadata for use with raw count data using the “statistical_analysis” command 1043 

of CellPhoneDB with database v2.0.0. The number of unique significant ligand-receptor co-expression 1044 

pairs (putative interactions; p value<0.05) between each cell type was then counted and visualised as 1045 

a heatmap, while exemplar interacting pairs were visualised by calculating mean average expression 1046 

level of gene 1 in cell type 1 and gene 2 in cell type 2 are indicated by colour and p values indicated by 1047 

circle size.    1048 
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 1049 
Figure S1. Comparison of FACS-based and scRNA-seq analysis of major B cell subsets. 1050 

A) Comparison of gates used for FACS-based sorting of B cell subsets for bulk repertoire sequencing (Fig1) with matched 1051 

single-cell RNA-seq (scRNA) cell populations. See Fig2 and Methods for full details about scRNA-seq analyes. 1052 

B) Cell type frequencies derived from FACS or scRNA-seq of B cell populations shown in A) for each donor with both FACS 1053 

and scRNA-seq data (n=7). cor denotes Pearson correlation coefficient and p denotes p value. 1054 

C) Antibody isotype frequencies derived from FACS or scVDJ-seq of B cell populations for each donor with both FACS and 1055 

scVDJ-seq data (n=6). cor denotes Pearson correlation coefficient and p denotes p value. 1056 

D) Mutation frequency of IgH sequences derived from FACS or scVDJ-seq of B cell populations.  1057 
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 1058 
Figure S2. Clonal overlap of expanded B cell clones between GC, MBC and PB subsets. 1059 

A) Frequency of clonotype sharing for expanded B cell clones (>2 members) between major B cell subsets. Eg. GC_MBC 1060 

denotes clone members were identified in both GC and MBC sorted repertoires. 1061 

B) Frequency of antibody isotypes for expanded B cell clones spanning multiple subsets. 1062 

C) Antibody subclass frequencies for expanded clones spanning different B cell populations (x axis). For each class of clone, 1063 

subset-specific members are examined (see groups at bottom). Data shown are individual data points used to calculate 1064 

mean frequencies in Fig1G. p values denote result of Student’s T Test.  1065 
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 1066 
Figure S3. Analysis of T cell and non-lymphoid cell populations in human tonsils by scRNA-seq. 1067 

A) Mean expression of key marker genes used to define T cell scRNA-seq clusters, including CD4+ naïve or central memory 1068 

(CD4+ NCM), CD4+, T follicular helper (TfH), T follicular regulatory (TfH), T regulatory (Treg), CD8+ naïve or central 1069 

memory (CD8+ NCM), CD8+ cytotoxic (CD8+ CTL), TIM3+ CD4/CD8 double-negative (TIM3+ DN) and cycling T cells, and 1070 

innate lymphoid cells (ILC) and natural killer (NK) cells. Size reflects frequency of cells in which each gene is detected. 1071 

B) Relative frequencies of different T cell subsets separated by clinical indication for tonsillectomy. OSA = obstructive sleep 1072 

apnoea, RT = recurrent tonsillitis 1073 

C) Mean expression of key marker genes used to define non-lymphoid cell scRNA-seq clusters, including 1074 

monocyte/macrophages precursor (Precursors), macrophage (MAC1, MAC2, MAC3), conventional dendritic cell 1 1075 

(cDC1), plasmacytoid-derived dendritic cell (pDC) and follicular dendritic cell (FDC) subsets.  1076 

D) Relative frequencies of different non-lymphoid cell subsets separated by clinical indication for tonsillectomy. 1077 

E) UMAP projection of tonsillar immune scRNA-seq data (32,607 cells; 7 donors) annotated by donor or clinical indication 1078 

for tonsillectomy (OSA (n = 2), RT (n = 3), RT+OSA (n = 2)). 1079 
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 1080 
Figure S4. Integration of tonsillar scRNA-seq datasets with lymph node and spleen scRNA-seq. 1081 

A) UMAP visualisation of integrated secondary lymphoid organ scRNA-seq datasets from human tonsils (n=7), lymph nodes, 1082 

(mesenteric (n=6); thoracic (n=1); inguinal (n=1)) and spleen (n=1) with cell type clusters annotated (74,607 cells). 1083 

B) UMAP of integrated secondary lymphoid organ scRNA-seq showing tissue and patient age at time of collection. 1084 

C) Age of patient donors by tissue. 1085 

D) Relative frequency of cells from different secondary lymphoid organs in annotated cell type clusters. 1086 

E) Relative frequency of scVDJ antibody isotype within B cell type clusters between tonsils (n=7) and mesenteric lymph 1087 

nodes (n=2 for which scVDJ was available). Age range for samples from each organ is annotated. 1088 

F) SHM frequencies from scVDJ data for B cell type clusters between tonsils and mesenteric lymph nodes. 1089 
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 1090 
Figure S5. Marker gene analysis of human B cell subsets from tonsils by single-cell RNA-seq. 1091 

A) Average gene expression from scRNA-seq for key marker genes in each of the 12 B cell subsets identified. The top 200 1092 

genes per cluster with p_val_adj < 0.05 and average log fold change > 0.3 are shown, with key markers of labelled. 1093 

B) Violin plots of important B cell markers from scRNA-seq in the 12 B cell subsets. 1094 

C) Expression in tonsillar GC B cell clusters of genes identified as prePB or preMBC markers in Holmes et al. 2020 (16). 1095 
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 1096 
Figure S6. UMAP visualisation of B cell scVDJ antibody isotype and SHM frequency. 1097 

A) UMAP of tonsillar B cells (25,728 cells) annotated for scVDJ antibody isotype. 1098 

B) Same as in A), except for scVDJ SHM frequencies.  1099 
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 1100 
Figure S7. Flow cytometry analysis of CD23, CD58 and CD108 expression in naïve and GC B cells.  1101 

A) Expression of FCER2 (CD23), CD58, and SEMA7A (CD108) in scRNA-seq B cell clusters. 1102 

B) Flow cytometry gating strategy for analysis of CD23, CD58 and CD108 surface marker expression. 1103 

C) Representative flow cytometry plots for CD23, CD58 and CD108 surface marker comparisons in naïve, intermediate and 1104 

GC gates (see B). 1105 

D) Relative frequency of CD23+CD108+, CD23+CD58+ and CD58+ CD108+ B cells in naïve, intermediate and GC populations 1106 

(n=5). Lines connect values from same donor. p values denote result of paired T tests. 1107 

E) Relative frequency of CD23+CD108+CD58+ in naïve, intermediate and GC populations (n=5). p values denote result of 1108 

paired T tests. 1109 

F) Frequencies of CD23+CD108+CD58+ B cells in the naïve and intermediate gates relative to total live CD19+ B cells, 1110 

compared with frequencies of preGC B cells relative to total B cells in matched scRNA-seq libraries (n=5). 1111 
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 1112 
Figure S8. Flow cytometry analysis of FCRL3+ B cells. 1113 

A) FCRL2 and FCRL3 flow cytometry staining, with fluorescence minus one (FMO) controls, for live tonsillar B cells (CD19+) 1114 

and non-B cells (CD19-). 1115 

B) Flow cytometry gating strategy for analysis of FCRL2 and FCRL3 surface marker expression in GC and memory B cells. 1116 

C) FCRL2 and FCRL3 flow cytometry staining, with FMO controls, for GC and memory B cells. 1117 

D) Representative flow cytometry plots for FCRL2 and FCRL3 surface marker expression in GC (upper) and memory B cells 1118 

(lower). Relative frequencies of FCRL2 and FCRL3 populations within parent GC and memory subsets are shown (n=5). 1119 

E) Representative histogram of IgM expression by FCRL2 and FCRL3 populations in GC (upper) and memory B cells (lower).  1120 

F) Relative frequencies of IgM+ populations within different FCRL2/FCRL3 populations are shown (n=5). Lines connect 1121 

values from same donor. p values denote result of paired T tests. 1122 

G) Immunohistochemistry of CD20 and FCRL3 in paediatric human tonsils.  1123 

H) Mean expression of FCRL2 and FCRL3 expression across all tonsillar immune cell subsets by scRNA-seq. 1124 
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 1125 

Figure S9. Example lineage trees of expanded FCRL3high GC B cell clones. 1126 

A) Reconstructed lineage tree phylogenies of expanded B cell clones containing sequences from bulk B cell repertoires 1127 

(circles) or scVDJ (triangles). Examples from three expanded FCRL3high GC B cells and a prePB lineage are shown. 1128 

Antibody isotype and sorted B cell subset (bulk) or annotated scRNA-seq cluster (scVDJ) are annotated for each tree. 1129 

  1130 
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 1131 
Figure S10. Sub-clustering of naïve, memory and activated B cell scRNA-seq clusters. 1132 

A) UMAP visualisation of naïve, memory and activated B cell subsets from Figure 2 that were subjected to reclustering 1133 

(10,772 cells). The Activated B cell cluster from Figure 2 is comprised of naïve, MBC and MBC FCRL4+ populations. 1134 

B) Expression of key markers for naïve, activated and MBC populations confirming identity of subclusters. 1135 

C) Relative frequency of scVDJ antibody isotype within subclusters, comparing basal and activated states of different B cell 1136 

populations. 1137 

D) Somatic hypermutation frequencies from scVDJ data of basal and activated states of different B cell populations. p values 1138 

denote results from Wilcoxon Ranked Signed Sum test.  1139 
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 1140 
Figure S11. PAGA-based trajectory analysis of B cell scRNA-seq clusters. 1141 

A) Connectivity of naïve, activated, preGC and GC B cell scRNA-seq clusters using partition-based graph abstraction (PAGA) 1142 

analysis. Line width denotes strength of connectivity. 1143 

B) Same as in A), but with cycling B cells also included.  1144 
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 1145 
Figure S12. Dynamic gene expression during B cell activation and GC entry/formation. 1146 

A) Gene expression for selected genes encoding transcription factors or cytokines and signalling molecules that are 1147 

significantly differentially expressed through velocity-based pseudotime of B cell activation and GC entry.  1148 

B) Immunohistochemistry of CD20 (B cell marker) and APE1 (APEX1) in two paediatric human tonsils reveals depleted 1149 

expression of APE1 in germinal centres (GCs) compared to the follicular zone. 1150 

C) scRNA-based quantitation of IGHM, IGHD, IGHG and IGHA expression. IGHG and IGHA values are the sum of subclass 1151 

counts. Activated cluster contains only naïve activated cells (see FigS10 for more information).  1152 
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 1153 
Figure S13. Transcription factor binding at the immunoglobulin heavy chain locus. 1154 

A) Schematic of the human immunoglobulin heavy chain (IgH) locus, with intergenic (I) promoters, switch regions, germline 1155 

transcripts and regulatory regions (Eμ, α1 RR, α2 RR). Open chromatin (DNase-seq) and ChIP-seq from ENCODE at Eμ, 1156 

α1 RR, α2 RR and a control neighbouring locus (CRIP1 / C14orf80) for EBV-transformed B lymphocyte cell line GM12878 1157 

and control non-B lymphocyte cell lines (K562, A549, HEPG2) are shown.   1158 
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 1159 
Figure S14. Class- and subclass-specific gene expression analyses of high SHM GC B cells. 1160 

A) Pseudobulk heatmaps of average expression per donor of differentially expressed genes between class-specific GC B 1161 

cells with similar affinity (based on SHM frequency). 1162 

B) Same as in A), but for subclass-specific gene expression analyses.  1163 
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 1164 
Figure S15. Characterisation of MBC states identified by scRNA-seq. 1165 

A) Single-cell expression of memory B cell (TNFRSF1B), naïve/undifferentiated (TCL1A) and germinal centre (CD38) 1166 

markers across all B cell subsets (left) and sorted memory B cell subsets (right). 1167 

B) Single-cell expression of key marker genes differentially expressed by CD21low MBC populations. 1168 

C) Top gene ontologies for significantly enriched genes in the IFN-response MBC cluster. 1169 

D) Single-cell AUCell-derived scores for top 50 marker genes of the naïve preGC B cells and FCRL3high GC B cells in MBC 1170 

subsets. * denotes p value < 0.001 from Wilcoxon Ranked Signed Sum test. 1171 

E) Single-cell AUCell-derived scores for CSR gene set in MBC subsets. * denotes p value < 0.001 from Wilcoxon Ranked 1172 

Signed Sum test. 1173 

F) Relative frequencies of tonsillar MBC scRNA-seq clusters in lymph node and spleen MBCs. 1174 

 1175 
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 1176 

Figure S16. Antibody and gene expression features of switched and unswitched MBCs. 1177 

A) Relative frequencies of scVDJ-derived antibody subclass expression within different MBC scRNA-seq populations. 1178 

B) Single-cell expression of key marker genes of the FCRL3high B cell states between switched and unswitched MBCs. p 1179 

values denote results from Wilcoxon Ranked Signed Sum test. 1180 

C) SHM frequencies of scVDJ-derived antibody genes between switched and unswitched B cells in different MBC subsets. 1181 

p values denote results from Wilcoxon Ranked Signed Sum test. 1182 


