362 research outputs found

    Descriptional Complexity of Three-Nonterminal Scattered Context Grammars: An Improvement

    Full text link
    Recently, it has been shown that every recursively enumerable language can be generated by a scattered context grammar with no more than three nonterminals. However, in that construction, the maximal number of nonterminals simultaneously rewritten during a derivation step depends on many factors, such as the cardinality of the alphabet of the generated language and the structure of the generated language itself. This paper improves the result by showing that the maximal number of nonterminals simultaneously rewritten during any derivation step can be limited by a small constant regardless of other factors

    A review paper on Integrated Aquaculture Benefits Project at Federal College of Forestry, Ibadan

    Get PDF
    This paper highlights some of the practices involved in integrated aquaculture such as poultry-cum-fish, pig-cum-fish, sheep and goat-cum-fish and grasscutter-cum-fish. Also the role of fisheries in alleviating protein deficiency was reviewed. Successful research findings on these practices in aquaculture at the Federal College of Forestry, Jericho, Ibadan (Nigeria) will eventually lead to alleviating protein deficiency of the inhabitants of the largest city in West African thus alleviating poverty in the natio

    Symbiotic EOL systems

    Get PDF

    Evaluated grammars

    Get PDF

    Descriptional complexity of multi-continuous grammars

    Get PDF
    The present paper discusses multi-continuous grammars and their descriptional complexity with respect to the number of nonterminals. It proves that six-nonterminal multi-continuous grammars characterize the family of recursively enumerable languages. In addition, this paper formulates an open problem area closely related to this characterization

    Self-regulating finite automata

    Get PDF
    This paper introduces and discusses self-regulating finite automata. In essence, these automata regulate the use of their rules by a sequence of rules applied during previous moves. A special attention is paid to turns defined as moves during which a self-regulating finite automaton starts a new self-regulating sequence of moves. Based on the number of turns, the present paper establishes two infinite hierarchies of language families resulting from two variants of these automata. In addition, it demonstrates that these hierarchies coincide with the hierarchies resulting from parallel right linear grammars and right linear simple matrix grammars, so the self-regulating finite automata can be viewed as the automaton counterparts to these grammars. Finally, this paper compares both infinite hierarchies. In addition, as an open problem area, it suggests the discussion of self-regulating pushdown automata and points out that they give rise to no infinite hierarchy analogical to the achieved hierarchies resulting from the self-regulating finite automata
    • …
    corecore