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Symbiotic EOL Systems 

Alexander Meduna* 

Summary : Cell symbiosis is described by EOL systems whose (direct) derivations 
are introduced on free monoids generated by finite sets of words consisting of one 
or two symbols. A single symbol represents a cell existing separately while two 
cells living symbiotically are represented by a pair of symbols. By using these 
systems, context sensitive and recursively enumerable languages are characterized. 
Thus, the presented modification remarkably increases the generative capacity of 
the classic concept of EOL systems. 
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1 Introduction 

1.1 Three points of view 
From the biological point of view, this paper attempts to describe cell symbiosis 

(see [l]-[2]) in a simple and formal way. To do so, the classic concept of EOL 
systems (see [3]-[4], [11]) is modified so that their derivations are introduced on 
free monoids generated by finite sets of words consisting of one or two symbols. 
Single symbols represent cells living separately while pairs of symbols represent 
cells living symbiotically. Attempting to propose our formal model as universal as 
possible, we do not differentiate between associations of plant-plant, animal-animal, 
and plant-animal cells or between prokaryotic and eukaryotic cells. It is proved 
that our approach remarkably increases the generative capacity of EOL systems. 
Or, more biologically speaking, it allows us to describe some developments of cell 
organisms than the classical approach does not. 

From the mathematical point of view, such a generalization of EOL systems is 
very natural: rather that allowing only letter monoids as domains of derivations we 
now introduce the derivations on free monoids generated by words consisting of one 
or two symbols. In other words, we investigate single finite substitutions iterated 
on free monoids generated by finite number of words having one or two symbols. 

From the formal language theory point of view, the resulting grammars are very 
simple in comparison with some other rewriting mechanisms (see, eg, [5]-[7], [9] 
and references therein). Moreover, they characterize both context sensitive and 
recursively enumerable languages in a natural way. 

'Computer Science Department, University of Missouri-Columbia, Columbia, Missouri 65211, 
USA and computing Centre, Technical University of Brno, CS-60200 Brno, Chechoslovakia 

165 



166 Alexander Med un a 

1.2 Relation to some other rewriting systems 
Although there are some similarities between our generalization of EOL systems 

and EIL systems (see [ll]), both of the concepts are fundamentally different: in 
EIL systems the way a letter is rewritten depends on its neighbors while in our 
systems it does not. What is restricted in our approach are derivation domains. 

There sire also some analogies between this paper and [8]. The latter introduces 
the notion of a derivation on word monoids generated by finite sets of words over 
total vocabularies of context free grammars. By using generators of length at most 
two, context sensitive and recursively enumerable languages are characterized by 
such modification of context-free grammars. The analogical result is proved for 
the generalization of EOL systems in this paper. Thus, we get the same generative 
power of both parallel and sequential context-independent rewriting defined on free 
monoids generated by finite words having one or two symbols. Since both ways of 
rewriting generate quite different language families when defined on letter monoids 
(see [ll]), this result may be of some interest. 

2 Preliminaries 

2.1 Basic Notions 
We assume that the reader is familiar with formal language theory (see [12]), in 

particular, with the theory of L systems (see [ll]). Some notations and definitions 
need perhaps an additional explanation. 

For a vocabulary V, V* denotes the letter monoid (generated by V under the 
operation of concatenation), e is the unit of V*,V+ = V" — {e}. For a word 
x &V*, [x| denotes the length of x. For a finite set of words W over V, W* denotes 
the word monoid (generated by W under the operation of concatenation). 

A context free grammar is a quadruple G — (V, P,S,T), where, as usual, V 
is a finite alphabet, P is a finite set of productions of the form A —• x, where 
A G V - T,x €V*,S eV - T in the axiom, and T C V is a terminal alphabet. 

A context sensitive grammar is specified in Penttonen Normal Form G = 
(V, P, S, T), where V, S, and T have the same meaning as for a context free gram-
mar and every production in P is either of the form AB —• AC or A —• i , where 
A,B,C EV -T,x€{Tu(V - T)2), see Theorem 2 in [10]. 

A phrase structure grammar is also specified in Penttonen Normal Form 
G = (V, P, S, T), where V, S, and T are as for a context free grammar and ev-
ery production in P is either of the form AB —• AC or A —• x, where 
A,B,C eV-T,x€ ({e} U T U (V - T)2), see Theorem 4 in [10]. 

Given a (context free, context sensitive, or phrase structure) grammar G, in the 
standard manner we can introduce the relations = > , = > " , and = > * on the 
free monoid generated by its alphabet. If we want to express that x => y in G 
according to production p, then we write x => y [p]. 

2.2 Basic Definition 
We now introduce a new concept of EOL systems, the subject of investigation in 

this paper, namely the notion of a symbiotic EOL system. 
Let V be an alphabet. A symbiotic EOL system (SEOL-system for short) is a 

4-tuple G = (W, P, S,T), where W C (V U V2), P is a finite set of productions of 
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the form A —• x, where A e V, x e V*, S € V - T, and T C V. G is said to be 
propagating if A — • x € P implies x ^ e. G is called an EOL system if V = W. 

The direct derivation relation ==> is now defined on W* as follows: For arbitrary 
words x,y G W* such that x = aia2. ..an,Oi € V,y = yi«/2 • • • J/niy« G V*, and 
productions ox — • j/i, o2 — • t/21 • • • j a„ —• yn € P, we say that x directly derives 
y according to a± —• yi, a2 —• y2,..., on —>y n (in G), in symbols 

x => yx => y [ox—*yi,a2—• ya.•••,an—• yn] 

The list of applied productions (written in the brackets) is usually omitted when 
no confusion arises. We denote the t-fold product of = > (for some i > 0) by =>* , 
the transitive closure of = > by ==>+, and the reflexive and transitive closure of 
==>• by = > * . The language of G, denoted by L(G,W), is defined by L(G) = {t; e 
T* : S =>* u}. 

2.3 Denotation of Language Families 
We denote by SEOL and EOL the families of languages generated by SE0L- and 

GOL-systems, respectively. The families of languages generated by propagating 
SEOL- and EOL-systems are denoted by SEPOL and EPOL, respectively. The 
family of context-free, context-sensitive, and recursively enumerable languages are 
denoted by CF, CS, and RE, respectively. 

3 Results 

3.1 Aim and Preliminary Results 
In this section, we examine the generative capacity of (propagating) SE0L-

systems. It follows immediately from the definitions and some basic results of 
formal language theory (see [11]-[12]) that 

CF c EPOL = EOL c CS c RE 

and 

EPOL = EOL C SEPOL Ç SEOL 

Next we will give precision to these relationships when proving that 
(i) a language is context sensitive if and only if it is generated by a propagating 

SEOL-system and 
(ii) a language is recursively enumerable if and only if it is generated by a 

SEOL-system. 
We close Section 3.1 by recalling a technical lemma from [8] yielding a normal 

form for context-sensitive grammars similar to the one given by Penttonen (see 
Section 2.1). We will find it useful when proving Theorem 1. 

Lemma 1 Every L € CS can be generated by a context sensitive grammar 
G = (NEF U NCS U T,P,S,T), where NCF,NCS, anti T are pairwise disjoint 
alphabets and every production in P is either of the form AB —• AC, where 
B 6 NCs, A,C E NCF, or of the form A — • x, where A e NCF, X 6 NCSVTUN%F 
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3.2 Main Result 
Now we consider the relationship between CS and SEPOL. 

Theorem 1 CS = SEPOL. 

Proof . It is straightforward to prove that SEPOL C CS, hence it suffices to prove 
the converse inclusion. 

Let £ be a context sensitive language generated by a context sensitive grammar 
G = (NCF U NCS U T, P, S, T) of the form described by Lemma 1. 

Let 
V = (NCF u NCS U T) 

and 
V' = V\J Q, 

where 
Q = {< A, B, C >: AB —• AC € P, A, C E NCF, B e NCS}-

Clearly, without loss of generality, we can assume that Q f l V = 0. 
The SEPOL-grammar, G\ is defined as follows: 

G' = (W,P,,S,T), 

where the set of productions f is defined in the following way: 

(0) for all A e V', add A —• A to P' ; 
(1) if A — > x e P , A & NCF, x £ NCs uTuN%F, then add A —• x to P 
(2) if AB —• AC e P, A, C e NCF, B e Ncs, then add the set of two produc-

tions {B —•< A,B,C >,< A, B,G >—» C) to P'. 

The set W C (V U V2 ) is defined as follows: 

W = {A < A, B,C >:< A, B, C >€ Q(A E JVCF)} U V. 

Obviously G is an SEPOL grammar. 
Let us now introduce a function h from (V ' )* into V* defined by: 
for all D € V, HID) = D, 
for all < XtD,Z > e Q, h(< X,D,Z >) = D\ 

let h~1 be the inverse of h. 
To show that L(G) = L[G'), we first prove two claims: 

Claim 1 If S =*m w in G,weV+, for some m> 0, then S =>•* v in G', where 
v 6 h~1(w). 

Proo f of Claim 1: This is established by induction on the length m of derivations 
in G. 

Let m = 0. The only w is S because S =>° S in G. Since S e W*, S =>° S 
in G' and by the definition of A - 1 , 5 e h~1(S). 

Let us suppose that our claim holds for all derivations of length at most m 
for some m > 0 and consider a derivation S =>-m+1 x in G,x e V*. Since 
m + 1 > 1, there is some y € V+ and p 6 P such that S =»m y => x[p] in G 
and by the induction hypothesis there is also a derivation 5 =>n y' in G' for some 
y' £ h~1(y),n > 0. By the definition, ¡ / e W*. 
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(i) Let us first assume that p = D —• y2 S P,D 6 NCF, J/2 € NCs U T U 
NCF> y ~ yiDy3, and x = yiy2y3,yi = ax...o,-,y3 = bi...bj, where ak,bt 6 
V, 1 < Jfc < t, 1 < / < j, for some t, j> 0 ( » = 0 implies yi = e and j = 0 
implies y3 = e). Since from the definition of h i t is clear that h-1(Z) = {Z} 
for all Z e NQF w e can write y' = z±Dz3, where zx € h - 1 ( y i ) and z3 €. h~1(y3), 
that is to say, Zi = c i . . . c;,Z3 = dx. . .dy, where c* e /i -1(afc), di € /i_1(6(), for 
1 < fc < t, 1 < J < J. It is clear that D —• y2 € P1, see (1). 

Let di ^ Q. Then, it is easy to see that y2 z3 € W* and so 

z iDz s = • z1y2z3 [ci — • c i , . . . , Ci —> Ci,D — • ya, dx — • d i , . . . , dy — • dy] 

in G'. Therefore, 5 =>•" Z\Dz3 = > z\y2z3 and ziy2z3 e h - 1(yij/2y3)-
Let dx € Q, that is, Dh(di) —• DC G P (for some C € NCF)> see the definition 

of /i. Hence, we have fc(dx) — • di in P', see (2) (observe that this production is the 
only production in P' that has di appearing on its right-hand side). It is clear, by 
the definition of W, that d2 Q. Thus, {ziDh(di)d2 ... dy, z\y2h(di)d2 ... dy) C 
W*. Since S =>n z\ Ddi . . . dy in G', there must exist the following derivation in 
G': 

S = » n _ 1 ziDh{di)d2 . . . dy 
= > ziDd\d2 . . . dy [ cx—• c 1 , . . . , c < — > c i t D — • D, 

—* ¿U <̂2 — • d 2 , . . . , dy — • dy] 

in G'. So, we get 

S z1Dh(d1)d2...d]-
=> ziy2h(di)d2 . . . dy [ cx—• c 1 , . . . , c < — • C i , D — • y2, 

fc(di) — » /i(dx), ^ — J , , . . . , dy — » dy] 

such that ziy2h(di)d2 . . . dy is in h~1(x). 
(ii) Let p = AB —* AC E P,A,C € NCF,B e NCS,y = yiABy2,yx,y2 e 

= yxACy3 ,y' = z iArz 2 ,z< 6 /T^y , ) , » e 1 ,2 ,F e / i _ 1 (5)> and yx = 
ox . . . DI, y3 = bi... bj, AK, bi e V, 1 < k < t, 1 < / < y, for some t',y > 0. Let Z\ = 
c1...ci,z3 = dx.. .dy,c f c € fc-1(ofc),dj S fc_1(6,),l < k < i,l < I < j. Clearly, 
{ 5 —•< A, J3,C > , < A,J3,C > — • C } C P>, see (2), and A< A, B,C > 6 W, 
see the definition of W. 

Let 7 = B. Since y' 6 W* and B 6 NCs,di & Q. Consequently, zxA < 
A,B,C> z2 and z\ACz2 are in W* by the definition of W. Thus, 

5 = > n ZxABZ2 

=> ziA < A,B,C > z2 [cx —• cx CI —• CI, A —• A, 
B —•< A,B,C>,d1 —• dx , . . . , dy — • dy] 

ZI ACZ2 [cx —• c x , . . . , CI — • CI, A —• A, 
< A, B,C >—• C, dx — • dx , . . . , dy — • dy] 

and Z\ACZ2 e / » _ 1 ( z ) . 
Let Y € Q. Clearly, h(Y) must be equal to B. By (2) and the definition of Q, 

we have B —• Y G P1. Clearly, z\ACz2 is in W* for d\ & Q as we have already 
shown. Thus, since 5 = > n z\AYz2 in G', the word zxAYz2 can be derived in G' 
as follows: 
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S =>n~1 zi ABz-i 
= > Z\ AYZ2 [c i — • c j , . . . , CÍ — • cy, A —• A, 

B —• Y,d\ —* di,...,dj —• dj\. 

Since z\A < A, B, C > z2 and z\ACz2 belong to W*, we get 

S = V » - 1 ziABz-x 
=>• ZI A < A,B,C> Z2 [CI —• CJ,..., A —• CI, A —• A, 

B —•< A,B,C>,d1 —• du ..., dj- —• dj\ 

ZxACZ2 [ci — > c i t . . . , c i — • Ci, A —• A, 
< A, B,C >—• C, DY —• DI DJ —• <FY] 

in G', where z\AGz2 e h~1(x). 
The points (i) and (ii) cover all possible rewriting of y in G. Thus, the claim 

now follows by the principle of induction. 

Claim 2 If S u in G', u € W*, for some m > 0, then S =»•* /i(u) tn G. 

P r o o f o f Claim 2: This is established by induction on the length m of derivations. 
For n = 0 the only u is S because S S in G'. Since S = h(S) we have 

S S in G. 
Let us assume the claim holds for all derivations of length at most n, for some 

n > 0, and consider a derivation S = > n + 1 y, where u € W*. Since n + 1 > 1, there 
is some v e W", such that S =>n v => uipl in G' and by the induction hypothesis 
S h(v) in G. 

We will first prove the following statement (*): 

Let v = rDs and p = D —• z £ P in G'. Then h(v) ==>•' /i(r)/i(z)A(a) in G, 
for some t = 0,1. (*) 

To verify (*), consider the following three cases: 
(i) Let h[z) = h{D), Bee (2). Then = > ° /i(r)^(z)/»(s) in G. 
(ii) Let z E (TUNCSUNCF)> D e NCF Then there is a production B —• z 6 P, 

see (1), and by the definition of h we have B —• z = h(B) —• híz). Thus, 
h{r)h(D)h(s) /l(r)A(3r)/l(3)[/i(JB) —+ A(Z)1 in G. 

(iii) Let z = C e NCF and D =< A,B,C > for some < A,B,C > S Q, 
see (2). By the definition of W, we have r = tA, where í 6 W* and so « = 
tACs. By the definition of Q, there is a production AB —• AC & P. Thus, 
tABs => tACs[AB —• AC] in G where tABs = h{tA)h(< A,B,C >)/i(3) and 
tACs = h(tA)h(C)h(s). 

By inspection of P1, the points (i) through (iii) cover all possible types of pro-
ductions in P', proving (*). 

It should be clear that by using (i) through (iii) we can construct the derivation 
h(v) =>* h(u), for some » 6 { 0 , . . . , |u|}, in the following way: first we rewrite all 
occurrences of symbols corresponding to the case (iii) and then all occurrences of 
symbols corresponding to (ii); the technical details are left to the reader. 

Thus, 5 =>•" A(u) h(u) in G. Hence, by the principle of induction, we 
have established Claim 2. 
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Now, the proof of the equivalence of G and G' can be derived from Claim 1 and 
2: 

By the definition of A - 1 , we have h~1{a) = {a } for all o £ T. Thus, by Claim 
1, we have for any x G T * : 

S ==>* x in G implies S =>* x in G', 

that is, L{G) C L{G'). 
Conversely, since T* C W", we get, by the definition of h and Claim 2, for any 

i 6 T' : 
S =>* x in G' implies S ==>•* x in G, 

that is, L(G') C L(G). 
Thus, L(G) = L(G') and so CS = SEPOL, which proves the theorem. 

• 

3.3 Some Corollaries an Conclusion 
First of all, Theorem 1 and the definitions yield the following normal form: 

Corollary 1 Let L be a context sensitive language over an alphabet T. Then L can 
be generated by an SEPOL system G = (W, T, P, S), where W is over an alphabet V 
such thatT CW,(W-V) C (V-T)2, and if A —* x and 1 < |x| then x g (V-T)2. 

Let us now turn to the investigation of SEX)L-grammars with erasing produc-
tions. We will show that these grammars generate precisely the family of recursively 
enumerable languages. 

Corollary 2 R E = SEOL. 

Proof . Clearly we have the containment SEOL C RE, hence it suffices to show 
R E C SEOL. 

Each language L 6 R E can be generated by a phrase structure grammar G in 
Penttonen Normal Form (see Section 2.1) which can be converted to the grammar 
of an analogical form to the one described by Lemma 1 (except that the former may 
contain some erasing productions), see [8]. Thus,' the containment R E C SEOL 
can be proved by analogy with the techniques used in the proof of Theorem 1. The 
details are left to the reader. 

• 
Since the forms of the resulting SE10L-grammar in the proof of Corollary 2 and 

that in the proof of Theorem 1 are analogical, we get the following: 

Corollary 3 Let L be a recursively-enumerable language over on alphabet T. Then 
L can be generated by an SEOL system G — (W, T, P, S), where W is over an 
alphabet V such that T C W, (W - V) C (V - T)2, and if A —* x and 1 < |x| then 
x € (V — T)2. 

Finally, summing up the main results of this paper, we obtain: 

Corollary 4 SEPOL = CS c SEOL = RE. 
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