51 research outputs found

    On The Importance Of The Interclump Medium For Superionization: O VI Formation In The Wind Of Zeta Puppis

    Get PDF
    We have studied superionization and X-ray line formation in the spectra of zeta Pup using our new stellar atmosphere code (XCMFGEN) that can be used to simultaneously analyze optical, UV, and X-ray observations. Here, we present results on the formation of the O VI lambda lambda 1032, 1038 doublet. Our simulations, supported by simple theoretical calculations, show that clumped wind models that assume void in the interclump space cannot reproduce the observed O vi profiles. However, enough O vi can be produced if the voids are filled by a low-density gas. The recombination of O vi is very efficient in the dense material, but in the tenuous interclump region an observable amount of O vi can be maintained. We also find that different UV resonance lines are sensitive to different density regimes in z Pup: C IV is almost exclusively formed within the densest regions, while the majority of O vi resides between clumps. N v is an intermediate case, with contributions from both the tenuous gas and clumps

    A Mass-Loss Rate Determination For Zeta Puppis From The Quantitative Analysis Of X-Ray Emission-Line Profiles

    Get PDF
    We fit every emission line in the high-resolution Chandra grating spectrum of. Pup with an empirical line profile model that accounts for the effects of Doppler broadening and attenuation by the bulk wind. For each of 16 lines or line complexes that can be reliably measured, we determine a best-fitting fiducial optical depth, tau(*) equivalent to kappa(M) over dot/4 pi R(*)upsilon(infinity), and place confidence limits on this parameter. These 16 lines include seven that have not previously been reported on in the literature. The extended wavelength range of these lines allows us to infer, for the first time, a clear increase in tau(*) with line wavelength, as expected from the wavelength increase of bound-free absorption opacity. The small overall values of tau(*), reflected in the rather modest asymmetry in the line profiles, can moreover all be fitted simultaneously by simply assuming a moderate mass-loss rate of 3.5 +/- 0.3 x 10(-6) M(circle dot) yr(-1), without any need to invoke porosity effects in the wind. The quoted uncertainty is statistical, but the largest source of uncertainty in the derived mass-loss rate is due to the uncertainty in the elemental abundances of zeta Pup, which affects the continuum opacity of the wind, and which we estimate to be a factor of 2. Even so, the mass-loss rate we find is significantly below the most recent smooth-wind H alpha mass-loss rate determinations for zeta Pup, but is in line with newer determinations that account for small-scale wind clumping. If zeta Pup is representative of other massive stars, these results will have important implications for stellar and Galactic evolution

    X-Ray, UV And Optical Analysis Of Supergiants: ϵ Ori

    Get PDF
    We present a multi-wavelength (X-ray to optical) analysis, based on non-local thermodynamic equilibrium photospheric+wind models, of the B0 Ia-supergiant: ϵ Ori. The aim is to test the consistency of physical parameters, such as the mass-loss rate and CNO abundances, derived from different spectral bands. The derived mass-loss rate is M˙/f∞−−−√∼ 1.6 × 10−6 M⊙ yr−1 where f∞ is the volume filling factor. However, the S iv λλ1062,1073 profiles are too strong in the models; to fit the observed profiles it is necessary to use f∞ \u3c0.01. This value is a factor of 5 to 10 lower than inferred from other diagnostics, and implies M˙≲1×10−7 M⊙ yr−1. The discrepancy could be related to porosity–vorosity effects or a problem with the ionization of sulphur in the wind. To fit the UV profiles of N v and O vi it was necessary to include emission from an interclump medium with a density contrast (ρcl/ρICM) of ∼100. X-ray emission in H/He like and Fe L lines was modelled using four plasma components located within the wind. We derive plasma temperatures from 1 × 106 to 7 × 106 K, with lower temperatures starting in the outer regions (R0 ∼ 3–6 R*), and a hot component starting closer to the star (R0 ≲ 2.9 R*). From X-ray line profiles we infer M˙\u3c4.9 × 10−7 M⊙ yr−1. The X-ray spectrum (≥0.1 kev) yields an X-ray luminosity LX ∼ 2.0 × 10−7Lbol, consistent with the superion line profiles. X-ray abundances are in agreement with those derived from the UV and optical analysis: ϵ Ori is slightly enhanced in nitrogen and depleted in carbon and oxygen, evidence for CNO processed material

    On the Importance of the Interclump Medium for Superionization: O VI Formation in the Wind of Zeta Pup

    Full text link
    We have studied superionization and X-ray line formation in the spectra of Zeta Pup using our new stellar atmosphere code (XCMFGEN) that can be used to simultaneously analyze optical, UV, and X-ray observations. Here, we present results on the formation of the O VI ll1032, 1038 doublet. Our simulations, supported by simple theoretical calculations, show that clumped wind models that assume void in the interclump space cannot reproduce the observed O VI profiles. However, enough O VI can be produced if the voids are filled by a low density gas. The recombination of O VI is very efficient in the dense material but in the tenuous interclump region an observable amount of O VI can be maintained. We also find that different UV resonance lines are sensitive to different density regimes in Zeta Pup : C IV is almost exclusively formed within the densest regions, while the majority of O VI resides between clumps. N V is an intermediate case, with contributions from both the tenuous gas and clumps.Comment: Accepted for publication in ApJL, 4 pages with 3 figure

    Measuring Mass-Loss Rates And Constraining Shock Physics Using X-Ray Line Profiles Of O Stars From The Chandra Archive

    Get PDF
    We quantitatively investigate the extent of wind absorption signatures in the X-ray grating spectra of all non-magnetic, effectively single O stars in the Chandra archive via line profile fitting. Under the usual assumption of a spherically symmetric wind with embedded shocks, we confirm previous claims that some objects show little or no wind absorption. However, many other objects do show asymmetric and blueshifted line profiles, indicative of wind absorption. For these stars, we are able to derive wind mass-loss rates from the ensemble of line profiles, and find values lower by an average factor of 3 than those predicted by current theoretical models, and consistent with Hα if clumping factors of fcl ≈ 20 are assumed. The same profile fitting indicates an onset radius of X-rays typically at r ≈ 1.5R*, and terminal velocities for the X-ray emitting wind component that are consistent with that of the bulk wind. We explore the likelihood that the stars in the sample that do not show significant wind absorption signatures in their line profiles have at least some X-ray emission that arises from colliding wind shocks with a close binary companion. The one clear exception is ζ Oph, a weak-wind star that appears to simply have a very low mass-loss rate. We also reanalyse the results from the canonical O supergiant ζ Pup, using a solar-metallicity wind opacity model and find M˙=1.8×10−6 M⊙yr−1, consistent with recent multiwavelength determinations

    The qWR star HD 45166. II. Fundamental stellar parameters and evidence of a latitude-dependent wind

    Full text link
    The enigmatic object HD 45166 is a qWR star in a binary system with an orbital period of 1.596 day, and presents a rich emission-line spectrum in addition to absorption lines from the companion star (B7 V). As the system inclination is very small (i=0.77 +- 0.09 deg), HD 45166 is an ideal laboratory for wind-structure studies. The goal of the present paper is to determine the fundamental stellar and wind parameters of the qWR star. A radiative transfer model for the wind and photosphere of the qWR star was calculated using the non-LTE code CMFGEN. The wind asymmetry was also analyzed using a recently-developed version of CMFGEN to compute the emerging spectrum in two-dimensional geometry. The temporal-variance spectrum (TVS) was calculated for studying the line-profile variations. Abundances, stellar and wind parameters of the qWR star were obtained. The qWR star has an effective temperature of Teff=50000 +- 2000 K, a luminosity of log(L/Lsun)=3.75 +- 0.08, and a corresponding photospheric radius of Rphot=1.00 Rsun. The star is helium-rich (N(H)/N(He) = 2.0), while the CNO abundances are anomalous when compared either to solar values, to planetary nebulae, or to WR stars. The mass-loss rate is Mdot = 2.2 . 10^{-7} Msun/yr, and the wind terminal velocity is vinf=425 km/s. The comparison between the observed line profiles and models computed under different latitude-dependent wind densities strongly suggests the presence of an oblate wind density enhancement, with a density contrast of at least 8:1 from equator to pole. If a high velocity polar wind is present (~1200 km/s), the minimum density contrast is reduced to 4:1. The wind parameters determined are unusual when compared to O-type stars or to typical WR stars. (abridged)Comment: 16 pages, 13 figures, accepted for publication in A&

    Mass loss from inhomogeneous hot star winds II. Constraints from a combined optical/UV study

    Full text link
    Mass-loss rates currently in use for hot, massive stars have recently been seriously questioned, mainly because of the effects of wind clumping. We investigate the impact of clumping on diagnostic ultraviolet resonance and optical recombination lines. Optically thick clumps, a non-void interclump medium, and a non-monotonic velocity field are all accounted for in a single model. We used 2D and 3D stochastic and radiation-hydrodynamic (RH) wind models, constructed by assembling 1D snapshots in radially independent slices. To compute synthetic spectra, we developed and used detailed radiative transfer codes for both recombination lines (solving the "formal integral") and resonance lines (using a Monte-Carlo approach). In addition, we propose an analytic method to model these lines in clumpy winds, which does not rely on optically thin clumping. Results: Synthetic spectra calculated directly from current RH wind models of the line-driven instability are unable to in parallel reproduce strategic optical and ultraviolet lines for the Galactic O-supergiant LCep. Using our stochastic wind models, we obtain consistent fits essentially by increasing the clumping in the inner wind. A mass-loss rate is derived that is approximately two times lower than predicted by the line-driven wind theory, but much higher than the corresponding rate derived from spectra when assuming optically thin clumps. Our analytic formulation for line formation is used to demonstrate the potential impact of optically thick clumping in weak-winded stars and to confirm recent results that resonance doublets may be used as tracers of wind structure and optically thick clumping. (Abridged)Comment: 14 pages+1 Appendix, 8 figures, 3 tables. Accepted for publication in Astronomy and Astrophysics. One reference updated, minor typo in Appendix correcte

    2D non-LTE Modeling for Axi-symmetric Winds. II. A Short Characteristic Solution for Radiative Transfer in Rotating Winds

    Full text link
    We present a new radiative transfer code for axi-symmetric stellar atmospheres and compare test results against 1D and 2D models with and without velocity fields. The code uses the short characteristic method with modifications to handle axi-symmetric and non-monotonic 3D wind velocities, and allows for distributed calculations. The formal solution along a characteristic is evaluated with a resolution that is proportional to the velocity gradient along the characteristic. This allows us to accurately map the variation of the opacities and emissivities as a function of frequency and spatial coordinates, but avoids unnecessary work in low velocity regions. We represent a characteristic with an impact-parameter vector p (a vector that is normal to the plane containing the characteristic and the origin) rather than the traditional unit vector in the direction of the ray. The code calculates the incoming intensities for the characteristics by a single latitudinal interpolation without any further interpolation in the radiation angles. Using this representation also provides a venue for distributed calculations since the radiative transfer can be done independently for each p.Comment: 18 pages, 12 figures, accepted for publication in A&

    Axi-symmetric Models of B[e] Supergiants: I. The Effective Temperature and Mass-loss Dependence of the Hydrogen and Helium Ionization Structure

    Full text link
    We calculate the hydrogen and helium ionization in B[e] envelopes and explore their dependence on mass-loss and effective temperature. We also present simulated observations of the Halpha emission line and the C IV 1550 doublet, and study their behavior. This paper reports our first results in an ongoing study of B[e] supergiants, and provides a glimpse on the ionization of the most important elements in self-consistent numerical simulations. Our newly developed 2D stellar atmosphere code, ASTAROTH, was used for the numerical simulations. The code self-consistently solves for the continuum radiation, non-LTE level populations, and electron temperature in axi-symmetric stellar envelopes. Observed profiles were calculated by an auxiliary program developed separately from ASTAROTH. In all but one of our models, H remained fully ionized. Due to ionizations from excited states it is much more difficult to get a H neutral disk than indicated by previous analytical calculations. Near the poles, the ionization is high in all models, while helium recombined in the equatorial regions for all but our lowest mass-loss rate. Although the model parameters were not adjusted to provide fits to any particular star, the theoretical profiles show some features seen in the profiles of R126. These include the partially resolved double peaked profile of Halpha, and the weak emission associated with the UV C IV resonance line.Comment: Accepted for publication in A&
    corecore