245 research outputs found

    An interferometric study of dissociative recombination radiation in neon and argon afterglows

    Get PDF
    Spectral line profiles on neon and argon determined by high resolution, photoelectric recording, pressure tuned Fabry-Perot interferomete

    A mathematical study of the electron decay in diffusion and recombination controlled afterglows - Annals of physics

    Get PDF
    Mathematical solution for electron continuity equation in decaying plasma afterglo

    Theory of collision-induced translation-rotation spectra: H2-He

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1103/PhysRevA.29.595.An adiabatic quantal theory of spectral line shapes in collision-induced absorption and emission is presented which incorporates the induced translation-rotation and translation-vibration spectra. The generalization to account for the anisotropy of the scattering potential is given. Calculations are carried out of the collision-induced absorption spectra of He in collisions with H2 with ab initio electric dipole functions and realistic potentials. The anisotropy of the interaction potential is small and is not included in the calculations. The predicted spectra are in satisfactory agreement with experimental data though some deviations occur which may be significant. The rotational line shapes have exponential wings and are not Lorentzian. The connection between the quantal and classical theories is written out explicitly for the isotropic overlap induction

    Cooperative damping mechanism of the resonance in the nuclear photoabsorption

    Get PDF
    We propose a resonance damping mechanism to explain the disappearance of the peaks around the position of the resonances higher than the Δ\Delta resonance in the nuclear photoabsorption. This phenomenon is understood by taking into account the cooperative effect of the collision broadening of Δ\Delta and NN^{*}, the pion distortion and the interference in the two-pion photoproduction processes in the nuclear medium.Comment: 11 pages, uses revtex.sty. To appear in Phys. Rev. Let

    Nuclear Photoabsorption at Photon Energies between 300 and 850 Mev

    Full text link
    We construct the formula for the photonuclear total absorption cross section using the projection method and the unitarity relation. Our treatment is very effective when interference effects in the absorption processes on a nucleon are strong. The disappearance of the peak around the position of the D13D_{13} resonance in the nuclear photoabsorption can be explained with the cooperative effect of the interference in two-pion production processes,the Fermi motion, the collision broadenings of Δ\Delta and NN^*, and the pion distortion in the nuclear medium. The change of the interference effect by the medium plays an important role.Comment: 22pages,7figures,revtex

    Photofission of heavy nuclei at energies up to 4 GeV

    Full text link
    Total photofission cross sections for 238U, 235U, 233U, 237Np, 232Th, and natPb have been measured simultaneously, using tagged photons in the energy range Egamma=0.17-3.84 GeV. This was the first experiment performed using the Photon Tagging Facility in Hall B at Jefferson Lab. Our results show that the photofission cross section for 238U relative to that for 237Np is about 80%, implying the presence of important processes that compete with fission. We also observe that the relative photofission cross sections do not depend strongly on the incident photon energy over this entire energy range. If we assume that for 237Np the photofission probability is equal to unity, we observe a significant shadowing effect starting below 1.5 GeV.Comment: 4 pages of RevTex, 6 postscript figures, Submitted to Phys. Rev. Let

    Photoabsorption on nuclei

    Get PDF
    We calculate the total photoabsorption cross section on nuclei in the energy range from 300 MeV to 1 GeV within the framework of a semi-classical phase space model. Besides medium modifications like Fermi motion and Pauli blocking we focus on the collision broadening of the involved resonances. The resonance contributions to the elementary cross section are fixed by fits to partial wave amplitudes of pion photoproduction. The cross sections for NRNNN \, R \to N \, N, needed for the calculation of collision broadening, are obtained by detailed balance from a fit to NNNNπN \, N \to N \, N \, \pi cross sections. We show that a reasonable collision broadening is not able to explain the experimentally observed disappearance of the D13(1520)D_{13}(1520)-resonance in the photoabsorption cross section on nuclei.Comment: 26 pages Latex including 9 postscript figure
    corecore