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As feature sizes have diminished the need for extremely thin photoresist films has grown. Given the poor
selectivity of typical resists with respect to silicon during plasma etching, it has become common to use
an intermediate hardmask to transfer the pattern. Furthermore the use of trilayer etch stacks to amplify
the achievable etch aspect ratio is becoming increasingly popular for critical layers. Here we introduce a
new fullerene based spin-on-carbon layer for use in a multilayer etch stack. Carbon films of between 20
and 1270 nm were prepared by spin coating. Thin silicon films were deposited on the carbon layer and
patterned using a thin photoresist. Patterns were transferred to the carbon layer with high anisotropy
at resolutions down to 40 nm using an oxygen plasma, and then subsequently etched into the silicon sub-
strate using an SF6/C4F8 etch with high aspect ratio.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The minimum feature size required by semiconductor devices
has continued to shrink to enable increasing chip density, with
‘2� nm’ flash and logic devices now available. As the resolution
requirements have increased it has become necessary to adopt
extremely thin photoresist films to mitigate problems such as
mechanical collapse of resist features upon development [1]. We
have previously demonstrated a high resolution, high sensitivity
and high etch durability fullerene resist [2] capable of aspect ratios
greater than 5:1 for 25 nm lines and spaces [3]. However, even
with such a resist the overall etch depth is limited by the usable re-
sist thickness. The use of a multilayer hardmask stack allows fur-
ther increase of the achievable etching aspect ratio. Typically
such a multilayer stack is formed by first coating the wafer with
a thick amorphous carbon layer using chemical vapor deposition
(CVD), and then overlaying this with a thin-silicon rich layer,
which may either be spin coated or prepared by CVD [4,5]. Finally
photoresist is spin coated on top of the silicon layer. A thin photo-
resist film is sufficient to pattern the thin silicon layer, avoiding
pattern collapse issues, and the silicon is used as a hard mask to
pattern the underlying carbon, giving a high aspect ratio carbon
pattern suitable for subsequent etching of the silicon wafer. By
alternating from silicon to carbon rich materials and vice versa
the overall etch selectivity can be maximized. In order to improve
manufacturability and decrease costs it would be beneficial to re-
place the use of chemical vapor deposition with spin-on hardmasks
ll rights reserved.
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(both silicon and carbon) [6,7]. Previously a novolac:HSQ bilayer
stack achieved 40 nm half-pitch resolution with an aspect ratio
of 3.25:1 as well as isolated 40 nm lines with an aspect ratio of
20:1 [8]. However, distortion of the spin-on-carbon features during
the final fluorine etch to silicon step, known as ‘wiggling’, is a sig-
nificant concern for sub 40 nm patterning [9]. Glodde et al. have re-
cently proposed that the absence of aliphatic hydrocarbons in the
carbon layer can reduce ‘wiggling’ [10]. Here we present an initial
study of several fullerene-based ‘spin-on-carbons’ (SoC) with very
low levels of aliphatic hydrocarbons. In addition spin-on-hard-
masks can suffer from low etching resistance [11], but the car-
bon-rich nature of the fullerene based SoC gives high etch
durability.

2. Experimental

Silicon (100) substrates (Rockwood Electronic Materials,
n-type) were used for all experimental procedures. Square chips,
2 by 2 cm in size, were cut from a wafer using a Disco DAD 321
wafer dicer. The samples were cleaned using semiconductor grade
chemicals from Riedel-de Haën. Samples were washed ultrasoni-
cally for 15 min in isopropyl alcohol (IPA), then rinsed for 1 min
in deionized (DI) water (Purite Neptune, 18.2 MXcm). A hydrogen
terminated surface was then prepared by dipping the substrates in
H2SO4 (95–98%):H2O2 for 10 min, DI water for 1 min and dilute HF
for 1 min, then rinsing in DI water for a further minute before dry-
ing with nitrogen. Substrates were stored under vacuum after
preparation and used within 2 days.

We evaluated three spin-on carbon hardmasks from Irresist-
ible Materials [12]. The spin-on carbon compositions were dis-
solved in a suitable solvent such as chloroform or anisole with a

http://dx.doi.org/10.1016/j.mee.2012.07.019
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Fig. 1. The normalized film thickness of SoC films IM-HM11-01 and IM-HM11-02
before and after ‘development’ in an organic solvent (MCB:IPA 1:1). For temper-
atures above 190 �C IM-HM11-02 was not removed by the solvent rinse, whilst a
temperature of 260 �C was required to render the IM-HM11-01 SoC insoluble.

Table 1
AFM roughness measurements of two IM-HM11-01 films and a reference sample of
silicon.

IM-HM11-01
baked at 225 �C

IM-HM11-01
baked at 375 �C

Bare
silicon

Average roughness (nm) 0.49 0.35 0.28
RMS roughness (nm) 0.60 0.45 0.35
Peak-to-valley roughness (nm) 7.24 4.50 4.57
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concentration in the range 5–50 g/l. In this report, film thickness
measurements were made for IM-HM11-01 and IM-HM11-02
films, whilst IM-HM11-03 was used for etching; further investiga-
tions to compare the performance of the different compositions
across tasks are underway. Films of the SoC were prepared by spin
coating on hydrogen-terminated silicon substrates with a speed
varying between 800 and 2000 RPM for 60 s. After spin coating
the film was baked for 2 min at temperatures of up to 330 �C. In
order to enable further processing, the SoC should be rendered
insoluble in typical solvents for resist and spin-on-hardmask
to enable further processing. The elution behavior of films of
IM-HM11-01 and IM-HM11-02 for thicknesses between 30 and
325 nm was tested as a function of the baking temperature.
Fig. 1 shows the normalized film thickness of two formulations
of the SoC (IM-HM11-01 and IM-HM11-02), before and after dip-
ping in monochlorobenzene (MCB):IPA 1:1 solution. Prior to bak-
ing the thickness of IM-HM11-01 was �320 nm, and the thickness
of IM-HM11-02 was �250 nm. For temperatures above 190 �C the
IM-HM11-02 film was rendered insoluble, whilst a temperature of
260 �C was required to achieve the same for IM-HM11-01. Film
thickness did not affect the elution results.

By varying the spin coating conditions and the concentration of
the spin-on-carbon solution, films from 20 to 325 nm could be pre-
pared in a single spin coating step. After coating films were stored in
Entegris chip trays under ambient conditions in a cleanroom. No
Fig. 2. AFM images of (a) reference sample of bare silicon, (b) an IM-HM11-01 film
degradation of performance was seen even after more than a month
of storage. The quality of the films was measure using a NanoWiz-
ard II atomic force microscope (JPK Instruments, UK) operating in
intermittent contact mode at a tip velocity of 4 lm/s, employing
pyramidal tipped Si cantilevers (PPP-NCL, Windsor Scientific, UK).
Fig. 2(a) shows an AFM image of a typical bare Silicon substrate,
and Fig. 2(b) and (c) shows SoC films baked at 225 and 375 �C
respectively. It can be seen from the figure and from Table 1 that
the SoC does not significantly degrade the smoothness of the
silicon.

As the carbon was rendered insoluble by heating it was possible
to spin coat further carbon on top to increase the thickness. Fig. 3
shows an SEM (FEI XL30 SFEG) cross section of a carbon film of
thickness 1.27 microns prepared by spinning five (IM-HM11-03)
films of thickness �250 nm on top of a each other with a heating
step of 330 �C for 5 min between each spin coating.

After preparation of a �300 nm IM-HM11-03 carbon film, a
40 nm thick silicon layer was deposited by sputtering at an argon
pressure of 1 � 10�2 mbar for 2 min with 250 W RF power. Alter-
natively, Plasma Enhanced Chemical Vapour Deposition (PECVD)
could be used to deposit the silicon film. Finally a photoresist
was spin coated on top of the silicon layer. For this study either
SAL601 (Shipley) or an in-house fullerene based resist were used.
A post application bake of 90 �C for 10 min was applied to the
SAL601; no post application bake was applied to the fullerene re-
sist. The resist was patterned using an FEI XL30 SFEG scanning
electron microscope equipped with a pattern generator (Raith
Elphy Plus). SAL601 was exposed with an area dose 20 lC/cm2

whilst the fullerene was exposed with a line dose of 10 nC/cm
(�1.5 mC/cm2). The SAL601 received a post exposure bake of
105 �C for 2 min and no post exposure bake was applied to the ful-
lerene. Finally SAL601 was developed for 5 min in MF322 (Shipley)
whilst the fullerene was developed in a 1:1 mixture of MCB:IPA.
80 nm halfpitch patterns and 40 nm sparse lines were patterned
and then etched into the silicon thin film using an Oxford Instru-
ments PlasmaPro NGP80 Inductively Coupled Plasma (ICP) etching
system. Silicon substrates were attached using vacuum grease to a
sacrificial silicon wafer to ensure good thermal contact. The sacri-
ficial wafer was mechanically clamped to the lower electrode,
baked at 225 �C respectively, and (c) an IM-HM11-01 film baked at 375 �C.



Fig. 3. SEM cross section of a SoC film of thickness 1.27 nm produced by spin
coating five films consecutively with a heating step between each coating.

Fig. 4. Lines of 40 nm width transferred from a thin resist film into the silicon
topcoat using an ICP etch. SEM image tilt is 45�.

Fig. 5. SEM image showing lines of width 38 nm, with height 260 nm, transferred
to the SoC by oxygen plasma etching. SEM image tilt is 44�.

Fig. 6. Lines of 60 nm width and 700 nm height (aspect ratio 11.6:1) etched into the
silicon substrate, using a mixed SF6/C4F8 etch.

Fig. 7. Lines of 40 nm width and 718 nm height (aspect ratio 18:1) etched into the
silicon substrate, using a mixed SF6/C4F8 etch.
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which is equipped with helium backside pressure to ensure good
thermal control of the sample during the etching process. The pat-
tern was transferred into the silicon topcoat using a 20 s mixed
mode SF6/C4F8 ICP etch. SF6 flow rate was 25 sccm and C4F8 flow
rate 30 sccm. An RF power of 20 W and ICP power of 220 W were
applied. Chamber pressure was 15 mT and the temperature was
1 �C. Fig. 4 shows 40 nm lines on a 200 nm pitch etched into the sil-
icon on top of the SoC.

To transfer the pattern from the silicon to the IM-HM11-03 SoC
an oxygen plasma etch was used. The selectivity of the silicon
hardmask with respect to the carbon for oxygen plasma is extre-
mely high, allowing transfer to thick carbon films. In order to min-
imize undercutting of the carbon, and maintain vertical sidewalls
during the etch, a low chamber pressure was needed, and it was
necessary to end the etch as soon as the etch depth reached the
substrate or severe undercutting was seen at the SoC foot. Fig. 5
shows lines of 38 nm width on a 200 nm pitch etched through a
260 nm thick SoC film. Etch duration was 20 s with an O2 flow rate
of 15 sccm. RF power of 100 W and ICP power of 300 W were ap-
plied. Chamber pressure was 2 mT and the temperature was 1 �C.

The final step was to transfer the carbon hard mask pattern into
the silicon substrate with another mixed mode SF6/C4F8 ICP etch.
For semi-dense 60 nm lines silicon features with an aspect ratio
of 11:1 were produced, as shown in Fig. 6, whilst for 40 nm line-
width features on a 200 nm pitch an aspect ratio of 18:1 (linewidth
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measured at the top) were produced, as shown in Fig. 7. In both
cases the mixed mode SF6/C4F8 ICP etch parameters used were:
SF6 flow rate 20 sccm, C4F8 flow rate 30 sccm, RF power 20 W,
ICP power 220 W. Chamber pressure was 15 mT. It can be seen
from the inserts to Figs. 6 and 7 that the sidewall verticality is sig-
nificantly degraded for the 40 nm features. Apart from the feature
size the primary difference was that Fig. 6 was etched at 5 �C,
whilst Fig. 7 was etched at 1 �C. Further optimization of the param-
eters for the 40 nm etch is required.

3. Conclusions

In summary, initial work on the development of a fullerene-
derivative based spin-on-carbon material, aimed at increasing
the achievable aspect ratio for sub-100 nm etching, has been pre-
sented. Films rich in aromatic carbon, from 20 to 325 nm in thick-
ness, have been prepared by spin coating. A post-spin bake step
renders the material insoluble in common organic solvents en-
abling further spin coating, and a multilayer carbon film of
1270 nm thickness has been prepared. Using a sputter coated thin
silicon topcoat and a thin (30–100 nm) photoresist film, patterns
with a linewidth of 40 nm have been transferred to the carbon
layer with good sidewall verticality. Preliminary results of etching
from the SoC pattern to the silicon substrate have shown 60 nm
features etched with an aspect ratio in excess of 11:1. Smaller fea-
tures have also successfully been transferred from the SoC to the
substrate, but further work is required to optimize the sidewall an-
gle. Using a suitable formulation of the fullerene SoC, the activation
temperature for hardening can be as low at 190 �C – compatible
with other microfabrication processes. Unlike current CVD ap-
proaches to the preparation of multilayer etch stacks the applica-
tion process is simple, quick and does not require expensive
deposition equipment. In comparison to polymers used in other
SoC approaches fullerene is inherently low in hydrogen content,
which has been shown to be key to reducing feature ‘wiggling’ as
pattern halfpitch decreases [10]. The etch durability of fullerene
based resists, described elsewhere [3], together with the high fidel-
ity transfer of 40 nm patterns to the SoC layer suggest that aspect
ratios in excess of 30:1 at feature sizes of 40 nm or less may be
achievable.
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