
PHYSICAL REVIEW A VOLUME 29, NUMBER 2 FEBRUARY 1984

Theory of collision-induced translation-rotation spectra: H2-He
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An adiabatic quantal theory of spectral line shapes in collision-induced absorption and emission is

presented which incorporates the induced translation-rotation and translation-vibration spectra.
The generalization to account for the anisotropy of the scattering potential is given. Calculations
are carried out of the collision-induced absorption spectra of He in collisions with H2 with ab initio
electric dipole functions and realistic potentials. The anisotropy of the interaction potential is small
and is not included in the calculations. The predicted spectra are in satisfactory agreement with ex-
perimental data though some deviations occur which may be significant. The rotational line shapes
have exponential wings and are not Lorentzian. The connection between the quantal and classical
theories is written out explicitly for the isotropic overlap induction.

I. INTRODUCTION

In a collision between two dissimilar atomic systems,
overlap forces induce an electric dipole which gives rise to
a translational spectrum in the far infrared (FIR). If one
of the colliding pair is a nonpolar molecule, a dipole is
produced by the electric fields of its multipole moments
which polarize the partner. In addition to the multipole
component of the induced dipole, there is an overlap com-
ponent (usually weaker) and both give rise to translation-
rotation absorption bands forbidden in the individual mol-
ecule. The spectra arise from free-free transitions, cou-
pled with molecular transitions, in which the energy and
momentum of the absorbed photon are transferred to the
collisional atom-molecule pair. ' Because induced dipoles
exist only for times v. of the order of the duration of the
collision, the spectra show a substantial bandwidth -~
orders of magnitude greater than ordinary Doppler or
pressure broadening. Emission and absorption due to the
induced dipoles in collisions of neutral particles are much
weaker than the familiar bremsstrahlung spectra of elec-
trons, and collision-induced emission has only recently
been observed in the laboratory.

Apart from the general interest in collisional interac-
tions which can be studied by collision-induced absorption
(CIA) in novel ways, CIA is of astrophysical significance
in regions of relatively high pressure and low temperature
where ionization is weak. Trafton has pointed out that

the opacity of the atmospheres of the outer planets is
largely due to H2-H2 and Hz-He collisions. The substan-
tial enhancement of induced absorption due to H2-He col-
lisions ' offers an interesting possibility for determining
the Hz to He ratio in dense, cold regions of space.
Collision-induced emission is significant in the atmo-
spheres of cool stars.

Whereas the FIR collision-induced absorption spectra
of pure H2 are well known from measurements at various
temperatures and over extended frequency regions, ' '

the spectra due to H2-He collisions are less certain. Be-
cause of the significance of the H2-He absorption spectra,
these are computed here from first principles to provide
new information concerning the shape of these spectra
and their variation with temperature.

Trafton ' has given an adiabatic description of the
translational absorption spectrum of a gas of pure H2 and
a gas mixture of H2 and He. By comparing line shapes
calculated with the assumption of an isotropic Lennard-
Jones interaction potential with experimental spectra, he
obtained empirical parameters defining a simple analytical
representation of the induced electric dipole. Wright and
Dalgarno' calculated the induced electric dipole for H2-
He from the wave functions of Gordon and Secrest' and
resolved it into three symmetry components. They calcu-
lated the adiabatic line shape of the translation-rotation
spectra and obtained satisfactory agreement with measure-
ment by scaling the theoretical dipole moment by a factor
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of 1.35. Recent calculations' '" show that the dipole mo-
ment of Wright and Dalgarno was not in error by such a
large factor. Instead, the discrepancy may be attributed to
the choice of the interaction potential. Collision-induced
absorption spectra are sensitive to the region of the in-
teraction potential when it passes through zero. Improved
H2-He interaction potentials show that the zero of
the potential adopted by Wright and Dalgarno' is located
at too large a distance.

Based on improved H2-He interaction potentials
and accurate computations of the induced dipole mo-
ment, ' we undertake here a quantal calculation of the in-
duced translation-rotation spectrum for comparison with
the measurement. We present the theory for an anisotro-
pic potential. The anisotropy of the Hz-He interaction is
small, however, and the numerical calculations are based
upon the isotropic component of the interaction. The
spectra have three incoherent parts, one due to the isotro-
pic component of the induced dipole, the others to aniso-
tropic components. The computed spectra are tested by
sum rules. ' Although collision-induced vibration-
rotation bands are not considered, the formalism can be
generalized readily to include vibrational transitions.

/J, ,(rr, RR ) = g A L(ir, R ) Yit (r,R ),
Li,

(7)

The molecular Boltzmann factor P, =P,PJ. designates a
normalized population probability of a vibration-rotation
state, where

—1

PJ =gje ' ggj (2j'+1)e
—PE ., —PE.

J

For hydrogen, gj ——1 if j is even and g&
——3 if j is odd. At

low temperatures, where vibration can be ignored,
P, o ——1 to a good approximation. The vibration-rotation
matrix element of p in (2) is given by

p„=(s
~

/J, (rr, RR ) s'),
where the vector r =rr describes the orientation and

separation of the hydrogen nuclei and R=RR is the vec-
tor joining the centers of mass of the colliding atom and
molecule.

If the induced dipole p, has components p„and p~ per-

pendicular to R, and p, parallel to R, the spherical com-
ponents of the induced dipole can be expanded in the
formi6''7

where po ——p, and p+& ——+-(p„+ip„)/v 2. , The interaction
between H2 and He consists mainly of the spherically
symmetric component of the potential Vo(R), and in our
numerical calculations we ignored the orientation-
dependent terms. By contrast, the dipole moment has
strong orientation-dependent components. To take the
orientation dependence of the dipole moment into ac-
count, we introduced in Eq. (7) the vector-coupled func-
tion Yir. These are eigenfunctions of the total angular
momentum J and projection M, composed of the spherical
harmonics YJ (r) and Yi (R ), according to

J

The absorption spectrum at temperature T and angular
frequency to =2vrcv generated by collision-induced dipole
moments can be written as '

4m
a(co) = n, nba(1 —e ~ ) Vg(co), (1)

where n, and nb are number densities of H2 and He,
/3=1/kT, Vis the volume, a(ro) is expressed in cm ', and
g(co) is the spectral density. The product Vg(ro) is a func-
tion of the temperature T and depends upon specific
molecular properties. The spectral density is defined in
terms of the matrix elements (t

~ p„~ t') of the electric
dipole moment p by the formula Yjt (r,R)= g C(j, /, J;m~, mt)YJ (r)Yt, (R), (8)

Nl Nlh

where M=mj+mi and C(j&,j j2,' 3m~, zm) are Clebsch-
Gordan coefficients. A more general scattering theory
of collision-induced absorption and emission is sketched
in Appendix A. We calculate the matrix elements of (7)
using the wave function of the collisional complex

VJtk(rr, RR)=u„(v) ukt(kR)Y~~ (r,R—),R
where we have assumed separability of vibrational, rota-
tional, and translational motion. We have, furthermore,
suppressed for convenience of notation the j dependence
of the vibrational wave function u„(r). Using the Wigner-
Eckart theorem we may write for the angularly depen-
dent part of the dipole matrix element

(j,/, J,M
~
YiL(r, R) ~j

', /', J',M')

=C(J, 1,J',M, v)(j, /, J
~ ~

YiL(r, R)
~ ~

j', /', J') .

g(o))= gP, gP, [ (t
~ p„~ t') )'5(co„+io« —ro), (2)

ss t, t'

where the subscript s=—Iu,j,mj I denotes the vibration-
rotation states of the molecule, and t = IE, or
k, /, mt, J,MI is an analogous vector designating the
translational state of the collisional complex consisting of
the inolecule H2 and atom He. Here / »d mt define the
orbital angular momentum and its projection, and J and
M are the coupled internal rotational and orbital angular
momentum quantum numbers. A prime indicates a final
state. Also, we have m„= (E, E, )/irt and-
co« (E; E, )/k w——hich a—re molecular and translational
transition frequencies, respectively, E, is the energy of rel-
ative motion, and P, is the normalized translational
Boltzmann factor at the temperature T. It may be written

P, =(Ao/V)e (3)

where A,o is the de Broglie wavelength. This is given in
terms of the reduced mass m of the collisional complex
and temperature T by

A,o——A' 2vrP/ .m

Expressions for the reduced matrix element
(j,/, J

~
~/t

~ j
j', /', J') may be obtained for each com-

ponent I., A, of (7) by multiplying (10) by C(J, 1,J',M, v)
and summing over M,M', v to give
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j' /' J'
&j,/, J

I I

I'iL
I I

J', /', J'& = [(2j+1)(2/+1)(2J+1)(2K+1)(2L+1)]'~C(/, L, /', 0,0)C(j,h, ,j';0,0) j / J
k L 1

where I I is a 9-j symbol identical to Fano's
X(j ', /, J',j,/, J;iL,L„,1).

The wave function pki(kR ) in (9) is the solution of the
radial Schrodinger equation

T

X I
&i Is

M, M', v

=(2J'+1) g &/, k
I
ALi(R)

I

/', k'&

d k2 /(/+ 1)
dR R

2ppl
Vo(R ) uk((kR ) =0, x&J, /, Jl I

~«
I

IJ', /', J'&

0, as R~O
1/2

uk((kR )—+
t

2m

,

m6'k
sin( kR rr/ /2+ Q—i ),

as R~ ao (14)

where 5i is the scattering phase shift. It is convenient to
use the energy normalization

where iri k =2mE, and Vo(R) is the spherical average of
the interaction potential. The equation is solved subject to
the boundary conditions

where i,f signify the initial and final state, respectively,
Ql Qd

(R)=& IA ( R)
I

(17)

is the vibrational matrix element, which we specialize now

to the case in which v =v'=0. Note that the square of the

sums in (16) is the same as a multiple sum over L,A, and
L', A, '. From (2) and (16) we get

g(co) =Pi g (2j+ 1)P.

X g f dE,P, g(2J'+1)
l, l'

2 I &i I/. If& I',
M, M', v

QkI kR Qk~I R dR = E&~ —E&

so that the sums over energy in (2) may be replaced by the
integrals f f dE dE'.

The sum of squares of the matrix elements of dipole
components (7) can be written

where we have already integrated over E;. The factor A

stems from converting the 5 function of frequency in (2)
to one of energy. The 5 function imposes the condition
~=(E,, —E, )+(EJ. EJ ) on the r—emaining integration in

(18). Since the radial wave functions are independent of J
and J', the matrix elements in Eq. (16) can be written as a
product and summed over J and J' according to

X(2J'+l)&i / J
I I

I'«
I

li'/'»'&&i / J
I I

I'i. i I
li'/' J'&= /iu 4i —,(2i+1)(2/+1)

J Jl 16m.

X [C(/, L, /', 0,0)] [C(j,k, ,j';0,0)]

the cross products disappearing. Thus

Vg(co) =Roti g Q (2j+1)P/[C(j, k.,j',0,0)] g (2/+1)[C(/, L, /';0, 0)]

X f I
&/, k

I
ALi(R)

I

/', k'&
I

e 'dE, . (20)

Energy conservation is imposed by the 5 function in (2) which defines an upper state k' under the integral for any fixed

k, j, j, and ca. The radial wave functions uik(kR )/R and matrix elements must be obtained by numerical integration.
Equation (20) is of the form g(co) =Gio(co)+Gi2(co)+Gi2(co)+, each component GI i(co) containing a transla-

tional contribution with j =j and a number of rotational lines with j &j,

GIi(co)=g(2j +I) P[ C(j,k, ,j;0, )0] gIi(~)+ g (2j+1)PI[C(j,i j';0,0)] gri(ro co,, ) . —
J J+J

For fixed L,A, , the functions gI i(co) are the same and are given by

(21)



BIRNBAUM, CHU, DALGARNO, FROMMHOLD, AND WRIGHT

VgLz(co)=BOA'g(2l+ 1)[C(I,L,l', 0,0)]' f ) (l, k ~ALz(R) ~1',k') ('e 'dE, ,
I,1'

(22)

but shifted by the rotational frequencies co~~ (which will be negative if j &j). From GLz(R), the absorption coefficient
a(co) is computed according to

a(co) = g ar z (co),
I., A,

with

2

aI z(co) = n, nbco(1 —e ) VGI z(co) .
3fic

(23)

(24)

Each aL z(co) features a translational component and a number of rotational lines just as GI z. The frequency-dependent
factor [1—exp( pirico)] —accounts for stimulated emission.

The computations to be presented below are based on numerical solutions of Eq. (22) for selected isotropic potentials.
From the solutions, the radial matrix elements are computed and substituted into the translational spectral density (22)
to yield rotation-translation spectra (21) and (24).

Moment relations ' (sum rules) are used to test the computed results. Since translational and rotational profiles are
given in terms of the same function gI z(co), it is sufficient to consider the unshifted spectral function for each given I., A, .
Their zeroth and first spectral moments Go and 6& are given by '

Go ——V f g~z(co)dco=4vr J [AJz(R)] g(R)R dR, (25)

00 2MGi-——V f coglz(co)dco= — f + "+' [~„(R)]' g(R)R'dR. (26)

These are translational quantities which are not affected
by the molecular state or transition. The function g(R) is
usually taken as the low-density limit of the classical radi-
al distribution function, g(R) =exp[ —PVo(R)], with
wave-mechanical corrections ' to the order of h . This
is sufficiently accurate for Hz-He at T) 190 K.

Collision-induced vibrational bands can also be obtained
by evaluating the vibrational matrix elements (17). The
molecular frequencies co„ then must include vibrational
transitions and the molecular Boltzmann factor must in-
clude vibrational states.

Although the theory is developed for the atom-diatom
pair, it also describes the essential features of the diatom-
diatom (Hz-Hz) collision-induced spectra. The atom is
formally replaced by the spherical average of the second
diatom which is assumed to be without internal structure.
While simultaneous transitions in both collisional partners
cannot be described in this formulation, they are known
from experiment to be extremely weak and can be ignored
in a first approximation. An accurate description of the
Hz-Hz translation-rotation spectra based on (20) may be
obtained as suggested by preliminary computations. '

Specialization of the results obtained here to the in-
teraction of dissimilar atoms is straightforward. In such
cases, the induced dipole (7) consists solely of the term
I.=1,A, =O, and rotational excitation is not possible. The
resulting translational spectrum is given by (22) and (24),
with the two nonvanishing coefficients (2l+1)[C(l, l, l
+1;0,0)] =/+1, and (2l+1)[C(l, l, l —1;0,0)] =I. The
resulting expressions are in agreement with previous
work. ' It can be shown similarly that collision-induced
light scattering by pairs of atoms results in a spectral
function (22), with the induced dipole operator replaced
by diatom polarizability invariants, and I.=0 and 2.

III. DETAILS OF THE LINE-SHAPE COMPUTATIONS

gl. z.( co) =e —~gl. z.(co) (27)

Sample computations at negative frequencies were seen to
be consistent with (27). For each computed line shape,
zeroth and first moments are obtained by integration of
the spectral intensity and compared with the sum rules
(25) and (26), and are typically found to be in agreement
to within -2%. Higher precision has been obtained in
trial runs at the expense of increased computer time.

At room temperature, about thirty partial waves contri-
bute to the H2-He spectrum. Computations of the 60000
matrix elements needed for a line shape at 300 K, based
on three induced parts L,A, =1,0, 3,2, and 1,2, require
about 2000 sec of CPU (central processor unit) time on a
Control Data Corporation Cyber-750/150 computer. Line

Adiabatic line shapes (22) can be obtained if the isotro-
pic part of the interaction potential is known, along with
the induced components AL, z(R). We use a computer code
which is an extension of an existing program developed
originally for collision-induced light scattering3 and ab-

sorption. The spectral functions VgL z(co) are obtained at
15 different frequencies (i.e., 0, 3, 8, 20, 40, 70, 100, 140,
200, 280, 400, 560, 800, 1000, and 1200 cm '). A third-
order spline interpolation of the logarithm of gL&(co) is

employed, followed by exponentiation, to compute the
spectral function at positive frequencies. Logarithmic in-

terpolation proved to be more accurate than direct inter-
polation. A straightforward exponential extrapolation is
used at the high frequencies, which, however, has little ef-

fect on the zeroth and first moments, or on the appear-
ance of the spectra. To compute g(co) at negative frequen-
cies, we use detailed balance
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shapes are computed from the recorded matrix elements
for a variety of temperatures in seconds.

A. Induced Dipole

The induced dipole components Al ~ have been comput-
ed from first principles. ' ' ' We base our computations
on the recent work of Wormer and van Dijk' which
shows that for L =A.+1 the induced dipoles are of the
form

in a.u. and (29)

p)p =0.61 1 5ap

The leading dispersion term is C7 ———61.8 a.u. ' For the
quadrupole-induced dipole, the constants are given by'

p32 ———0.3224

in a.u. and

p32 ——0.8190ap,

Cq ——v 3a9=1.16 (31)

in a.u. The helium polarizability a is given in Ref. 35 and
the hydrogen quadrupole moment 0 in Ref. 36.

The other nonvanishing coefficients of the induced di-
pole are those with I.=k —1 which are purely short range.
Except for A&2, given by

(oo—R )
A &2(R)= —(35.361)&10 )exp 0.560 75ap

(o.o —R )'

5.8211ap

(28)

For the isotropic component (L = 1),' the induced dipole
components are

pip
——25.019

empirical anisotropy. Detailed discussions of the vari-
ous He-Hz potentials can be found elsewhere. ' ' For
our computations of the absorption spectra we chose the
empirical' and ab initio potentials as representative ex-

amples of the H2-He interaction.

IV. RESULTS

A. Calculated ab initio absorption spectra

The spectra consist of a broad pure translational part,
dominated by the isotropic component (L =1,A, =O,
marked 1-0 in Figs. 1—3), and generally smaller contribu-
tions from the anisotropic components (marked 3-2 and
1-2, respectively). The rotational lines are due to the
quadrupole induction (3-2), and a weaker quadrupolar
overlap contribution from the 1-2 component.

At the high temperatures, the two potentials lead to
spectra which are in reasonable agreement. At the lowest
temperature (77 K), differences of 15% occur in the
translational part, but the rotational-line intensities are ap-
parently not affected by the small differences of the po-
tentials. The rotational-line intensities are dominated by
the long-range quadrupolar induction term Cz/R . Line
spectra based on this induction mechanism effectively
average potentials over a relatively large range of distance
which often reduces the effects of differences between po-
tential models. The isotropic part, in contrast, has a much
shorter range owing to the small p&p and has an almost
negligible dispersion part. The translational profile,
which is basically due to this induction mechanism, mag-
nifies the differences of the potentials over a very small
range of separations near their collision diameters, which,
however, in the present case differ by only 1.3%.

Theoretical potentials tend to overestimate the magni-
tude of o and, indeed, the ab initio value of cr is 5.745ao,

in a.u. , with oo ——5.742ao, they are not significant.
Other components (L=5,A, =4 and L=5,A, =6) have

been determined. ' However, the associated spectral in-
tensities amount to only a few hundredths of one percent
of the total intensity, owing to the smallness of high-order
overlap dipoles' and the higher multipole moments,
and we ignore them.

B. Potential

10-6

Ol
tO

E

I

E

10
C

3

H2-He 7T K
) +10%

Previously, a Lennard- Jones 6-12 potential with
o =2.75 A and ejk =19.7 K (Ref. 39) has been used for
analyzing collision-induced absorption in He-H2. Recent
theoretical work' ' ' " has resulted in much improved
potentials with significantly larger collision diameters o. of
=3.0 A. Empirical potentials based on nuclear magnetic
resonance ' and transport data ' have been proposed.
That by Gengenbach and Hahn, ' which is based on
molecular beam scattering over a range of energies up to
2.9 eV is probably the most reliable in the vicinity of the
collision diameter which is so important for CIA intensi-
ties. Shafer and Gordon adopted it to determine an

10 8

0

Frequency (cm ')

FIG. 1. Absorption spectrum at 77.4 K due to H2-He col-
lisions. The heavy line represents the total theoretical intensities

given by the sum of the three components shown as light curves
marked L-A, =1-0, 1-2, and 3-2. The computation is based on
the ab initio induced dipole (28-32) and the empirical potential
of Gengenbach and Hahn (Ref. 18). The dashed curve is, simi-

larly, the total computed intensity, but based instead on an
ab initio potential of Meyer et al. (Ref. 20). The dots are mea-
surements by Birnbaum (Ref. 6). The arrows indicate the
rotational-line positions of hydrogen.
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10
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E
CO
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H2-He 195K

10-8
0

Frequency (cm ')

FKJ. 2. Absorption spectrum at 195 K due to H2-He col-
lisions. Details are as for Fig. 1.

compared to the empirical value' of 5.671ao. A collision
diameter too large by l%%uo produces an intensity deficiency
of about 10% in the case of short-range induction. The
longer-ranged inductions usually show a lesser sensitivity
to o. Our preference is for the spectra based on the
empirical potential. '

B. Moments

Ol 10-6
CO
Ul
CO

E

H2-He 292 K

I

E
V

10

3

—7

Zeroth and first spectral moments may be calculated
from the profiles using the left-hand sides of Eqs. (25) and
(26). The results for 77, 195, and 297 K are given in the
columns labeled g(co) in Table I. The moments can also
be obtained directly from the interaction potential and
induced-dipole component, without computing the spec-
tral function, by using the right-hand sides of (25) and
(26). These results are given for T=195 and 297 K in
columns marked g in Table I. The former are exact
wave-mechanical values, while the latter are based on a
classical expression of the pair distribution function with
wave-mechanical corrections to the order -h . Compar-
isons are carried out for several contributions of the dipole
moment and potential functions. For the isotropic com-
ponents, the lowest-order quantal corrections amount to
—10% at 297 K, —15% at 195 K, and 30—40% at 77 K.
Whereas at the two highest temperatures the corrections
reduce the error to an acceptable limit of 2%, at 77 K a

much greater error occurs and the present sum rules with
lowest-order quantum corrections are less useful. (Sum-
rule moments are, therefore, not given in Table I for the
lowest temperature. ) For the quadrupole-induced part, the
lowest-order quantum corrections are smaller and often
negative. Apparently, the long-range nature of the
quadrupole-induced dipole is associated with substantial
positive corrections at small distances, and negative
corrections at large distances and these corrections tend to
cancel. The small anisotropic component with L =1,A, =2
shows the same short-range behavior as the isotropic part,
with quantal corrections that are large and positive.

At 297 K the moments based on the spectral function
and sum rules agree within 1—3%, the sum rules giving
the greater values. The agreement is within the uncertain-
ty of the line-shape computation and confirms the correct-
ness of the computed spectra Qu. antal corrections are sig-
nificant for the H2-He system even at 300 K.

C. Comparison with experiment

The measurements of a(co) are shown as dots in Figs.
1—3. They lie consistently above theory by as much as
20% except for the strong Sp(1) line at 77 K, where the
measured absorption is less than the computed value. The
H2-He spectra are obtained by subtracting two comparable
measurements, one in the mixture and the other in pure
hydrogen. Consequently, the difference spectra for H2-He
collisions is of lower accuracy than for neat systems.
However, since the most prominent difference of the H2-
He spectrum from the H2-H2 spectrum is the translational
component generated by the isotropic part of the induced
dipole, a feature which is absent in pure hydrogen, errors
should be relatively small in the measurement of the
translational spectrum of the mixture. The rotational
lines, on the other hand, are in order of magnitude more
intense in pure hydrogen at comparable densities, so that
the measurements of the rotational lines in the mixture are
of lesser accuracy even when optimal mixture ratios are
employed.

With the help of a model line-shape function and a
least-mean-squares fitting procedure it is possible to
decompose the measured spectra into approximate isotro-
pic and anisotropic components. The empirical isotropic
line shape can be compared with the computed spectral
function g~p(co). The model line shape is more intense
than the calculated line shape particularly at lower tem-
peratures and falls off faster than the theoretical profiles,
suggesting a slightly longer range p&o for the induced iso-
tropic dipole than that given in Eq. (29).

We were led to a similar conclusion from an empirical
determination of the range parameter p=0.337 A, a value
which is nearly unaffected by the uncertainties of the in-
teraction potentials. However, the falloff of the model
line shape is even steeper than this empirical range would
suggest. Thus the ab initio range p&0 is probably too
small.

10-e
0

Frequency (cm ') D. Uncertainty of computed spectra

FIG. 3. Absorption spectrum at 292.4 K due to H2-He col-
lisions. Details are as for Fig. 1.

The comparison of moments computed from the quan-
tum line shape and from sum rules at the higher tempera-
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TABLE I. Computed spectral moments of Hz-He absorption spectra. compared for various induced models, AI ~, and isotropic in-

teraction potentials, labeled by the equation (in parentheses) or reference number. g(m) signifies the moments Go and G~ obtained by
integrating spectral density profiles, and g indicates moments obtained from the sum rules, Eqs. (25) and (26).

(Eq.)

Ref.

T=77 K
10 Go 10 G)

erg cm erg cm /s
g(co) g(m)

10'2Go

eIg cm
g(co)

0.397
0.362
0.352
0.349
0.529
0.751

0.969
0.884
0.962
0.951
1.44
2.04

0.944
0.829
0.849
0.878
1.24
1.40

0.973
0.850
0.870
0.907
1.28
1.45

2.27
1.99
2.28
2.36
3.32
3.74

2.34
2.05
2.34
2.44
3.44
3.89

1.51
1.37
1,46
1.44
1.96
1.95

1.55
1.41
1.50
1.48
2.02
2.01

3.59
3.27
3.89
3.84
5.22
5.16

3.70
3.37
4.02
3.97
5.39
5.38

I.=1,A, =2
(32)
(32)

0.014
0.013

0.030
0.029

0.032
0.028

0.061
0.055

0.062
0.056

0.048
0.044

0.087
0.079

L=3 A=2
(30),(31)
(30),(31)
(31)
(31)
(31)
(31)

18
20
20
19
45
39

0.136
0.133
0.086
0.084
0.098
0.116

0.116
0.111
0.057
0.056
0.069
0.087

0.198
0.188
0.114
0.114
0.130
0.144

0.201
0.191
0.115
0.116
0.133
0.146

0.190
0.177
0.085
0.086
0.103
0.116

0.193
0.179
0.086
0.087
0.105
0.118

0.024
0.023
0.013
0.013
0.015
0.016

0.025
0.024
0.014
0.014
0.016
0.016

0.251
0.234
0.108
0.108
0.128
0.136

0.256
0.239
0.110
0.111
0.132
0.139

tures indicates a precision of the line-shape calculations of
better than 2%. This precision is nearly uniform over the
frequency range considered, and only in the far wings of
the spectral function g(co), where the intensities have fal-
len off to less than 10 of the peak value, do the numeri-
cal inaccuracies increase. This does not significantly
affect the precision of the computed absorption spectra
shown in Figs. 1—3.

The QCCQpocp of the computed hne shapes ls controlled
by the input functions. The calculated and measured line
shapes of the translational spectra differ somewhat as
Figs. 1—3 illustrate. At the higher temperatures, the
difference in the peak translational intensities of between
10% and 15% may exceed the experimental uncertainties
and be significant. At 77 K the differences amount to
about 25% and probably are outside the errors of the mea-
surement. The observed differences are due presumably to
uncertainties in the potential, to approximations such as
the neglect of electron correlation in the calculation of the
induction models, and to measurement error. The failure
to account for the anisotropy of the potential is not likely
to lead to an error which is significant compared with the
experimental error.

The uncertainty of present potential models amounts to
a 10% change for the isotropic and a smaller change for
the anisotropic components. This is illustrated in the fig-
UI'cs by thc so11d RIld dashed 11Ilcs, whcI'c computed spec-
tra based on different potentials' ' are compared. Table
I compares the computed spectra, 1 moments which show
thc same tcndcnc1cs, 11ncs 2 Rnd 3 fol thc lsotrop1c part,
and lines 7 and 8, and 9 and 10 for the anisotropic com-

ponents. Earlier potential models like the HFD model
give rise to substantial uncertainties, from 30% to 50%, if
comparable induced dipoles are input as shown by lines 3
and 5 of Table I. The unsuitability of a Lennard-Jones po-
tential' ' is seen by comparing lines 3 and 6 of Table I.

An estimate of the effect of uncertainties associated
with the ub initio induced dipoles can be obtained in simi-
lar ways. Bcrns et aI. Used a variatlonal approach to
calcUlRtc induced-dipole components. SpcctI'Rl moments
computed with thclr 1sotI'oplc 1ndUccd component dl ffcl"

by almost 20% at high temperatures; compare lines 2 and
3 of Table I. The main anisotropic component is even
morc Unccrtaln as thc comparison of 11ncs 10 Rnd 11
shows. %'c note that Berns et ah. do not obtain an aniso-
tropic overlap contribution, the quadrupole induction con-
sisting of the 8 term only. Recent preliminary results
by Meyer apparently support the results of Wormer and
van Dijk at the separations of interest. The agreement is
at the 5% level which indicates an uncertainty of 10% for
the computed spectra, because of the quadratic depen-
dcncc oIl thc dlpolc stlcngth.

V. CONCLUSION

We have formulated a wave-mechanical theory of the
line shape of collision-induced absorption in the adiabatic
RppI'oxlm ation. Thc thcoI'y 1s Rppl1c able to thc
translat1on-rotat1on spectra of coll1slonal systems cons1st™
ing of an atom and a diatomic molecule. It was used to
compute CIA spectra of H2-He, for which accurate dipole
functions and interaction potentials are available. The ro-
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tational line shapes, which are computed here for the first
time on the basis of a rigorous theory, show exponential
wings and are not Lorentzian as previously assumed. '

While we have not considered vibrational CIA spectra,
the formalism is applicable directly to that case. It can
also be used to calculate the line shapes of pairs of collid-
ing diatomic molecules.

For reliable predictions of CIA intensities, accurate
values of the repulsive interaction for separations near the
collision diameter must be used. The exceedingly strong
dependence of CIA spectra, particularly the isotropic and
other short-range parts, on the repulsive interaction sug-
gests that it may be interesting to test the assumption re-
garding the neglect of anisotropy.
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APPENDIX A: EFFECT OF ANISOTROPIC
POTENTIAL

Vj~(k(RR r)= g QRJJ~('k(R)Yj~)' (R r)/R
j' I'

(Al)

where the radial wave functions are regular at the origin,
satisfy the coupled Schrodinger equation given by Arthurs
and Dalgarno, and behave asymptotically as

To take into account the anisotropy of the interaction
potential we introduce wave functions according to

RJJ rk(R) =jIJ 2m

mk k

1/2

F '~
6JJ 5g sin(kR —le/2)—

1/2

R (j,l;j ', l')cos(k'R —l'm/2) (A2)

in which the wave numbers k' and k are related by

-k +Ej=- k' +Ej
2m ~ 2m

(A3)

The matrix R is defined by R =i(1+S) '(1 —S), where S
is the scattering matrix and the factor

F=1+g [R (j,l;j', l')]
j', I'

normalizes the flux of incoming particles.

a(co) = A,on, nba(1 —e ~)4
3c

&J,l,z, k;g„l,
l
w„ lg', l', r,k';J„l, &

= f RJ ( k(R)ALp(R)Rq, (,j, (R)dR .

The collision-induced absorption coefficient becomes

(A5)

The collision-induced absorption coefficient is obtained
by inserting the extra sums over exit channels into Eq.
(22). The closed-form sum over J and J' cannot be used,
as the radial wave functions depend on J. The radial ma-
trix elements are given by

X g &. f dE, e ' g g (ZJ'+ 1)

x &&&&g &J2 l2 ~
I

Y~i
I I

j»l»~'& &j l ~ k'j 2 i2
I
~a~ I

J' I' ~' k'j»l3 &

s J2 12 j3 13

(A6)

APPENDIX 8: THE CLASSICAL LIMIT—
SPHERICAL CASE

1/21 2

k(R)= —2m E, — —V,(R)
2mB

(B3)

g gl l &l, k ll (R) ll', k'& l'.
I'= I+ 1 I

(B1)

For the radial wave functions, we use the WKBJ approxi-
mations

It is instructive to make the detailed connection between
the classical and quantal expressions for the absorption
coefficient. To avoid the complexities of angular momen-
turn coupling, we consider the case of a pair of colliding
atoms for which the summation over partial waves in Eq.
(20) reduces to the form

R, is the classical distance of closest appmach and
L =Pi l(l+1) is the square of the orbital angular momen-
tum. In the final state, 1 =l+1 and

k'(R) =—2m E, +fun 2
—Vo(R)—

1 (L +A')

2mB

1/2

(B4)

In the classical limit as A~O, the oscillations in the
WKBJ wave functions become infinitely rapid but the
difference in phase between u~k(R) and u~k(R) remains
finite. Thus

2m
uLk(R) =

m6'k

where

1/2
R

sin f k(r)dr
C

lim [k'(R) —k(R)] = co+
m

Pi~0 mR'

Using the formula
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sinx siny = —,
' [cos(x —y) —cos(x+y)]

and neglecting the second rapidly oscillating term, we ob-
tain for the matrix-element limit

m
~e haik(r)

the limit may be written in the form

(87)

lim (LE
~ p ~

L +Pi, E+fici) )
fi~O

f p(R)dR

tR mX cos co+ — dr . (86)
mr

If we introduce the variables

00

lim (LE
~ p ~

L+A, E+fuo) = f tj, (t)e'ee' 'dt,
fr~0 27TR

(88)

so that the matrix elements are the Fourier transform of
the classical dipole.

If the number of contributing partial waves is large, we
may replace the discrete summation over l by an integra-
tion. The angular momentum is related to the impact pa-
rameter b according to L =lk=kbA'. Thus

pl' [ (l,k
~

p(R)
~

I', k') ['= f b f p, (t)e'"'dt db=
4 f b f p(t)e' 'dt (89)

(810)

where x =Ez IkT.

Finally carrying out the integration over E, in (20), we obtain the classical formula appropriate for fico ((kii T (Ref 5g):

3/2 00cc(cu)=, n, nba f db b f dxx e " f p(t)e'"'dt
3c(mkii T)'i —oo
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