326 research outputs found

    Rayleigh Scattering in the Atmosphere of the Warm Exo-Neptune GJ 3470b

    Get PDF
    GJ 3470b is a warm Neptune-size planet transiting an M dwarf star. Like the handful of other small exoplanets for which transmission spectroscopy has been obtained, GJ 3470b exhibits a flat spectrum in the near- and mid-infrared. Recently, a tentative detection of Rayleigh scattering in its atmosphere has been reported. This signal manifests itself as an observed increase of the planetary radius as a function of decreasing wavelength in the visible. We set out to verify this detection and observed several transits of this planet with the LCOGT network and the Kuiper telescope in four different bands (Sloan g, Sloan i, Harris B, and Harris V). Our analysis reveals a strong Rayleigh scattering slope, thus confirming previous results. This makes GJ 3470b the smallest known exoplanet with a detection of Rayleigh scattering. We find that the most plausible scenario is a hydrogen/helium-dominated atmosphere covered by clouds which obscure absorption features in the infrared and hazes which give rise to scattering in the visible. Our results demonstrate the feasibility of exoplanet atmospheric characterization from the ground, even with meter-class telescopes

    Unusual Isotopic Abundances in a Fully-Convective Stellar Binary

    Full text link
    Low-mass M dwarfs represent the most common outcome of star formation, but their complex emergent spectra hinder detailed studies of their composition and initial formation. The measurement of isotopic ratios is a key tool that has been used to unlock the formation of our Solar System, the Sun, and the nuclear processes within more massive stars. We observed GJ 745AB, two M dwarfs orbiting in a wide binary, with the IRTF/iSHELL spectrograph. Our spectroscopy of CO in these stars at the 4.7 micron fundamental and 2.3 micron first-overtone rovibrational bandheads reveals 12C16O, 13C16O, and 12C18O in their photospheres. Since the stars are fully convective, the atomic constituents of these isotopologues should be uniformly mixed throughout the stars' interiors. We find that in these M dwarfs, both 12C/13C and 16O/18O greatly exceed the Solar values. These measurements cannot be explained solely by models of Galactic chemical evolution, but require that the stars formed from an ISM significantly enriched by material ejected from an exploding core-collape supernova. These isotopic measurements complement the elemental abundances provided by large-scale spectroscopic surveys, and open a new window onto studies of Galactic evolution, stellar populations, and individual systems.Comment: 11 pages, 4 data files, 3 figures, 2 tables. ApJ in pres

    ACME Stellar Spectra. I. Absolutely Calibrated, Mostly Empirical Flux Densities of 55 Cancri and its Transiting Planet 55 Cancri e

    Full text link
    The ACME Spectra project provides absolutely calibrated, mostly empirical spectra of exoplanet host stars for use in analysis of the stars and their planets. Spectra are obtained from ground-based telescopes and are tied directly to calibrated ground- and space-based photometry. The spectra remain only "mostly" empirical because of telluric absorption, but interpolation of stellar models over the gaps in wavelength coverage provides continuous stellar spectra. Among other uses, the spectra are suitable for precisely converting observed secondary eclipses (occultations) into absolute flux units with minimal recourse to models. In this letter I introduce ACME's methods and present a calibrated spectrum of the nearby, super-Earth hosting star 55 Cancri that spans the range from 0.81-5.05 micron. This spectrum is well-suited for interpreting near- and thermal-infrared eclipse observations. With this spectrum I show that the brightness temperature of the small, low-mass transiting planet 55 Cnc e is 1950 +260/-190 K at 4.5 micron (cooler than previously reported), which corresponds to a planetary flux of 0.44 +0.12/-0.08 mJy. This result suggests the planet has some combination of a nonzero albedo, a moderately efficient redistribution of absorbed stellar irradiation, and/or an optically thick atmosphere, but more precise eclipse measurements are required to distinguish between these scenarii.Comment: Accepted to A&A. 6 pages, 1 figure, 1 electronic table. See http://irtfweb.ifa.hawaii.edu/~spex/IRTF_Spectral_Library/ for an alternative spectru

    A global cloud map of the nearest known brown dwarf

    Full text link
    Brown dwarfs -- substellar bodies more massive than planets but not massive enough to initiate the sustained hydrogen fusion that powers self-luminous stars -- are born hot and slowly cool as they age. As they cool below about 2,300 K, liquid or crystalline particles composed of calcium aluminates, silicates and iron condense into atmospheric 'dust', which disappears at still cooler temperatures (around 1,300 K). Models to explain this dust dispersal include both an abrupt sinking of the entire cloud deck into the deep, unob- servable atmosphere and breakup of the cloud into scattered patches (as seen on Jupiter and Saturn). Thus far, observations of brown dwarfs have been limited to globally integrated measurements, which can reveal surface inhomogeneities but cannot unambiguously resolve surface features. Here we report a two-dimensional map of a brown dwarf's surface that allows identification of large-scale bright and dark features, indicative of patchy clouds.Comment: 17 pages, 8 figures. Spectra and map available upon reques

    Characterizing Exoplanets in the Visible and Infrared: A Spectrometer Concept for the EChO Space Mission

    Get PDF
    Transit-spectroscopy of exoplanets is one of the key observational techniques to characterize the extrasolar planet and its atmosphere. The observational challenges of these measurements require dedicated instrumentation and only the space environment allows an undisturbed access to earth-like atmospheric features such as water or carbon-dioxide. Therefore, several exoplanet-specific space missions are currently being studied. One of them is EChO, the Exoplanet Characterization Observatory, which is part of ESA's Cosmic Vision 2015-2025 program, and which is one of four candidates for the M3 launch slot in 2024. In this paper we present the results of our assessment study of the EChO spectrometer, the only science instrument onboard this spacecraft. The instrument is a multi-channel all-reflective dispersive spectrometer, covering the wavelength range from 400 nm to 16 microns simultaneously with a moderately low spectral resolution. We illustrate how the key technical challenge of the EChO mission - the high photometric stability - influences the choice of spectrometer concept and drives fundamentally the instrument design. First performance evaluations underline the fitness of the elaborated design solution for the needs of the EChO mission.Comment: 20 pages, 8 figures, accepted for publication in the Journal of Astronomical Instrumentatio

    Directly Imaging Rocky Planets from the Ground

    Get PDF
    Over the past three decades instruments on the ground and in space have discovered thousands of planets outside the solar system. These observations have given rise to an astonishingly detailed picture of the demographics of short-period planets, but are incomplete at longer periods where both the sensitivity of transit surveys and radial velocity signals plummet. Even more glaring is that the spectra of planets discovered with these indirect methods are either inaccessible (radial velocity detections) or only available for a small subclass of transiting planets with thick, clear atmospheres. Direct detection can be used to discover and characterize the atmospheres of planets at intermediate and wide separations, including non-transiting exoplanets. Today, a small number of exoplanets have been directly imaged, but they represent only a rare class of young, self-luminous super-Jovian-mass objects orbiting tens to hundreds of AU from their host stars. Atmospheric characterization of planets in the <5 AU regime, where radial velocity (RV) surveys have revealed an abundance of other worlds, is technically feasible with 30-m class apertures in combination with an advanced AO system, coronagraph, and suite of spectrometers and imagers. There is a vast range of unexplored science accessible through astrometry, photometry, and spectroscopy of rocky planets, ice giants, and gas giants. In this whitepaper we will focus on one of the most ambitious science goals --- detecting for the first time habitable-zone rocky (<1.6 R_Earth) exoplanets in reflected light around nearby M-dwarfsComment: 8 pages, 1 figure, Astro2020 Science White Pape

    Validation and Initial Characterization of the Long Period Planet Kepler-1654 b

    Get PDF
    Fewer than 20 transiting Kepler planets have periods longer than one year. Our early search of the Kepler light curves revealed one such system, Kepler-1654 b (originally KIC~8410697b), which shows exactly two transit events and whose second transit occurred only 5 days before the failure of the second of two reaction wheels brought the primary Kepler mission to an end. A number of authors have also examined light curves from the Kepler mission searching for long period planets and identified this candidate. Starting in Sept. 2014 we began an observational program of imaging, reconnaissance spectroscopy and precision radial velocity measurements which confirm with a high degree of confidence that Kepler-1654 b is a {\it bona fide} transiting planet orbiting a mature G2V star (Teff=5580_{eff}= 5580K, [Fe/H]=-0.08) with a semi-major axis of 2.03 AU, a period of 1047.84 days and a radius of 0.82±\pm0.02 RJup_{Jup}. Radial Velocity (RV) measurements using Keck's HIRES spectrometer obtained over 2.5 years set a limit to the planet's mass of <0.5 (3σ<0.5\ (3\sigma) MJup_{Jup}. The bulk density of the planet is similar to that of Saturn or possibly lower. We assess the suitability of temperate gas giants like Kepler-1654b for transit spectroscopy with the James Webb Space Telescope since their relatively cold equilibrium temperatures (Tpl200_{pl}\sim 200K) make them interesting from the standpoint of exo-planet atmospheric physics. Unfortunately, these low temperatures also make the atmospheric scale heights small and thus transmission spectroscopy challenging. Finally, the long time between transits can make scheduling JWST observations difficult---as is the case with Kepler-1654b.Comment: accepted to Astronomical Journa
    corecore