1,579 research outputs found

    The Albedos of Kepler's Close-in super-Earths

    Get PDF
    Exoplanet research focusing on the characterization of super-Earths is currently limited to those handful targets orbiting bright stars that are amenable to detailed study. This Letter proposes to look at alternative avenues to probe the surface and atmospheric properties of this category of planets, known to be ubiquitous in our galaxy. I conduct Markov Chain Monte Carlo lightcurve analyses for 97 Kepler close-in RP2.0RR_P \lesssim 2.0 R_{\oplus} super-Earth candidates with the aim to detect their occultations at visible wavelengths. Brightness temperatures and geometric albedos in the Kepler bandpass are constrained for 27 super-Earth candidates. A hierarchical Bayesian modeling approach is then employed to characterize the population-level reflective properties of these close-in super-Earths. I find median geometric albedos AgA_g in the Kepler bandpass ranging between 0.16 and 0.30, once decontaminated from thermal emission. These super-Earths geometric albedos are statistically larger than for hot Jupiters, which have medians AgA_g ranging between 0.06 and 0.11. A subset of objects, including Kepler-10b, exhibit significantly larger albedos (AgA_g\gtrsim0.4). I argue that a better understanding of the incidence of stellar irradiation on planetary surface and atmospheric processes is key to explain the diversity in albedos observed for close-in super-Earths.Comment: ApJ Letters, in press. 6 pages, 3 figures and 1 tabl

    Patent Claim Obviousness in Jury Trials: Where\u27s the Analysis?

    Get PDF

    Understanding Trends Associated with Clouds in Irradiated Exoplanets

    Full text link
    Unlike previously explored relationships between the properties of hot Jovian atmospheres, the geometric albedo and the incident stellar flux do not exhibit a clear correlation, as revealed by our re-analysis of Q0 to Q14 Kepler data. If the albedo is primarily associated with the presence of clouds in these irradiated atmospheres, a holistic modeling approach needs to relate the following properties: the strength of stellar irradiation (and hence the strength and depth of atmospheric circulation), the geometric albedo (which controls both the fraction of starlight absorbed and the pressure level at which it is predominantly absorbed) and the properties of the embedded cloud particles (which determine the albedo). The anticipated diversity in cloud properties renders any correlation between the geometric albedo and the stellar flux to be weak and characterized by considerable scatter. In the limit of vertically uniform populations of scatterers and absorbers, we use an analytical model and scaling relations to relate the temperature-pressure profile of an irradiated atmosphere and the photon deposition layer and to estimate if a cloud particle will be lofted by atmospheric circulation. We derive an analytical formula for computing the albedo spectrum in terms of the cloud properties, which we compare to the measured albedo spectrum of HD 189733b by Evans et al. (2013). Furthermore, we show that whether an optical phase curve is flat or sinusoidal depends on whether the particles are small or large as defined by the Knudsen number. This may be an explanation for why Kepler-7b exhibits evidence for the longitudinal variation in abundance of condensates, while Kepler-12b shows no evidence for the presence of condensates, despite the incident stellar flux being similar for both exoplanets.Comment: Accepted by ApJ (on 29th August 2013). 11 pages, 5 figures, 1 table. Minor typo in Figure 3c correcte

    Rotational Mixing and Lithium Depletion

    Full text link
    I review basic observational features in Population I stars which strongly implicate rotation as a mixing agent; these include dispersion at fixed temperature in coeval populations and main sequence lithium depletion for a range of masses at a rate which decays with time. New developments related to the possible suppression of mixing at late ages, close binary mergers and their lithium signature, and an alternate origin for dispersion in young cool stars tied to radius anomalies observed in active young stars are discussed. I highlight uncertainties in models of Population II lithium depletion and dispersion related to the treatment of angular momentum loss. Finally, the origins of rotation are tied to conditions in the pre-main sequence, and there is thus some evidence that enviroment and planet formation could impact stellar rotational properties. This may be related to recent observational evidence for cluster to cluster variations in lithium depletion and a connection between the presence of planets and stellar lithium depletion.Comment: 6 pages, 1 figure, to appear in proceedings of IAU Symp. 268, in pres

    Emergent Exoplanet Flux: Review of the Spitzer Results

    Full text link
    Observations using the Spitzer Space Telescope provided the first detections of photons from extrasolar planets. Spitzer observations are allowing us to infer the temperature structure, composition, and dynamics of exoplanet atmospheres. The Spitzer studies extend from many hot Jupiters, to the hot Neptune orbiting GJ436. Here I review the current status of Spitzer secondary eclipse observations, and summarize the results from the viewpoint of what is robust, what needs more work, and what the observations are telling us about the physical nature of exoplanet atmospheres.Comment: 11 pages, 8 figures, to appear in Proceedings of IAU Symposium 25

    Four families of maximal real algebraic hypersurfaces in RP4\mathbb{RP}^4

    Full text link
    In this paper, we present four families of maximal real algebraic hypersurfaces of even degree in RP4\mathbb{RP}^4 constructed using O. Viro's combinatorial patchworking method. We compare the Euler characteristic of the real part and the signature of the complex part of double coverings of CP4\mathbb{CP}^4 ramified over the complex part of the constructed real algebraic hypersurfaces. We prove that these invariants are not necessarily equal and can even be asymptotically different.Comment: 56 pages, 15 figure

    Towards consistent mapping of distant worlds: secondary-eclipse scanning of the exoplanet HD189733b

    Full text link
    Mapping distant worlds is the next frontier for exoplanet infrared photometry studies. Ultimately, constraining spatial and temporal properties of an exoplanet atmosphere will provide further insight into its physics. For tidally-locked hot Jupiters that transit and are eclipsed by their host star, the first steps are now possible. Our aim is to constrain an exoplanet's shape, brightness distribution (BD) and system parameters from its light curve. Notably, we rely on the eclipse scanning. We use archived Spitzer 8-{\mu}m data of HD189733 (6 transits, 8 secondary eclipses, and a phase curve) in a global MCMC procedure for mitigating systematics. We also include HD189733's out-of-transit radial velocity measurements. We find a 6-{\sigma} deviation from the expected occultation of a uniformly-bright disk. This deviation emerges mainly from HD189733b's thermal pattern, not from its shape. We indicate that the correlation of the orbital eccentricity, e, and BD (uniform time offset) does also depend on the stellar density, \rho*, and the impact parameter, b (e-b-\rho*-BD correlation). For HD189733b, we find that relaxing the e-constraint and using more complex BDs lead to lower stellar/planetary densities and a more localized and latitudinally-shifted hot spot. We obtain an improved constraint on the upper limit of HD189733b's orbital eccentricity, e<0.011 (95%), when including the RV measurements. Our study provides new insights into the analysis of exoplanet light curves and a proper framework for future eclipse-scanning observations. Observations of the same exoplanet at different wavelengths will improve the constraints on its system parameters while ultimately yielding a large-scale time-dependent 3D map of its atmosphere. Finally, we discuss the perspective of extending our method to observations in the visible, in particular to better understand exoplanet albedos.Comment: Accepted for publication in A&A. Final version will be available soon at http://www.aanda.org by Free Open Acces

    The Eccentricity Distribution of Short-Period Planet Candidates Detected by Kepler in Occultation

    Get PDF
    We characterize the eccentricity distribution of a sample of ~50 short-period planet candidates using transit and occultation measurements from NASA's Kepler Mission. First, we evaluate the sensitivity of our hierarchical Bayesian modeling and test its robustness to model misspecification using simulated data. When analyzing actual data assuming a Rayleigh distribution for eccentricity, we find that the posterior mode for the dispersion parameter is σ=0.081±0.0030.014\sigma=0.081 \pm^{0.014}_{0.003}. We find that a two-component Gaussian mixture model for ecosωe \cos \omega and esinωe \sin \omega provides a better model than either a Rayleigh or Beta distribution. Based on our favored model, we find that 90%\sim90\% of planet candidates in our sample come from a population with an eccentricity distribution characterized by a small dispersion (0.01\sim0.01), and 10%\sim10\% come from a population with a larger dispersion (0.22\sim0.22). Finally, we investigate how the eccentricity distribution correlates with selected planet and host star parameters. We find evidence that suggests systems around higher metallicity stars and planet candidates with smaller radii come from a more complex eccentricity distribution.Comment: Accepted for publication in Ap

    Refraction in exoplanet atmospheres: Photometric signatures, implications for transmission spectroscopy, and search in Kepler data

    Full text link
    Refraction deflects photons that pass through atmospheres, which affects transit light curves. Refraction thus provides an avenue to probe physical properties of exoplanet atmospheres and to constrain the presence of clouds and hazes. In addition, an effective surface can be imposed by refraction, thereby limiting the pressure levels probed by transmission spectroscopy. The main objective of the paper is to model the effects of refraction on photometric light curves for realistic planets and to explore the dependencies on atmospheric physical parameters. We also explore under which circumstances transmission spectra are significantly affected by refraction. Finally, we search for refraction signatures in photometric residuals in Kepler data. We use the model of Hui & Seager (2002) to compute deflection angles and refraction transit light curves, allowing us to explore the parameter space of atmospheric properties. The observational search is performed by stacking large samples of transit light curves from Kepler. We find that out-of-transit refraction shoulders are the most easily observable features, which can reach peak amplitudes of ~10 parts per million (ppm) for planets around Sun-like stars. More typical amplitudes are a few ppm or less for Jovians and at the sub-ppm level for super-Earths. Interestingly, the signal-to-noise ratio of any refraction residuals for planets orbiting Sun-like hosts are expected to be similar for planets orbiting red dwarfs. We also find that the maximum depth probed by transmission spectroscopy is not limited by refraction for weakly lensing planets, but that the incidence of refraction can vary significantly for strongly lensing planets. We find no signs of refraction features in the stacked Kepler light curves, which is in agreement with our model predictions.Comment: Accepted for publication in A&
    corecore