852 research outputs found

    The 2013 Okhotsk deep-focus earthquake: Rupture beyond the metastable olivine wedge and thermally controlled rise time near the edge of a slab

    Get PDF
    The 2013 M8.3 Okhotsk earthquake involves two primary mechanisms of deep-focus earthquake rupture, mineral phase transformation of olivine to spinel and thermal shear instability. Backprojection imaging of broadband seismograms recorded by the North American and European networks indicates bilateral rupture toward NE and SSE. The rupture paths of the NE segment and other regional M7 earthquakes are confined in narrow regions along the slab contours, consistent with the phase transformation mechanism. However, the SSE rupture propagates a long distance across the slab and aftershocks are distributed across a ~60 km wide zone, beyond the plausible thickness of the metastable olivine wedge, favoring thermal shear weakening. While the NE rupture is only visible at high frequencies, the SSE rupture is consistently observed across a broad-frequency range. This frequency-dependent rupture mode can be explained by lateral variations of rise time controlled by thermal thinning of the slab near its northern end

    Variation in Microbial Community Composition and Culturability in the Rhizosphere of Leucanthemopsis alpina (L.) Heywood and Adjacent Bare Soil Along an Alpine Chronosequence

    Get PDF
    We compared the size, culturability, diversity, and dominant species similarity of the bacterial communities of Leucanthemopsis alpina (L.) Heywood rhizosphere and adjacent bare soil (interspace) along a chronosequence of soil development time (5, 50, and 70years) in the forefield of the Dammaglacier (Switzerland). We found no evidence that the size of the bacterial community was significantly affected by either soil age or the presence of L. alpina. In contrast, the proportion of the bacterial community that could be cultured on nonselective agars, and which was taken as an indication of the proportion of r-selected populations, was significantly higher in the 50- and 70-year-old soils than in the 5-year-old soil, and was also significantly higher in the rhizosphere of L. alpina at all time points. RDA indicated significant correlations between the increased culturability of the bacterial community over time and increasing concentrations of labile N, and between the increased culturability in the rhizosphere and increased concentrations of labile C and N. HaeIII-amplified ribosomal DNA (rDNA) restriction analysis of a library of 120 clones of 16S rDNA revealed 85 distinct phylotypes. Hurlbert's probability of interspecific encounter (PIE) values derived from this library ranged from 0.95 to 1.0, indicating a very high genetic diversity. There was no significant difference in the PIE values of rhizosphere and interspace communities. Detrended correspondence analysis (DCA) of 16S ribosomal RNA (rRNA) denaturing gradient gel electrophoresis (DGGE) community profiles clearly distinguished the rhizosphere from the interspace community in the 5-year-old soils and also clearly distinguished between these communities and the rhizosphere and interspace communities of the 50- and 70-year-old soils. However, 16S rRNA DGGE revealed little difference between rhizosphere and interspace communities in the 50- and 70-year-old soils. The relative similarity of the 16S rRNA profiles strongly reflected labile carbon and nitrogen availability. Overall, our results suggest that improved C and N availability in the rhizosphere of L. alpina increases the size of r-selected bacterial species populations, but that the influence of L. alpina depends on soil age, being maximal in the youngest soils and minimal in the oldest. The reduced influence of L. alpina in the older soils may reflect a feedback between improved nutrient availability and reduced rhizodepositio

    Response of sediment microbial community structure in a freshwater reservoir to manipulations in oxygen availability

    Get PDF
    Hypolimnetic oxygenation systems (HOx) are being increasingly used in freshwater reservoirs to elevate dissolved oxygen levels in the hypolimnion and suppress sediment-water fluxes of soluble metals (e.g. Fe and Mn) which are often microbially mediated. We assessed changes in sediment microbial community structure and corresponding biogeochemical cycling on a reservoir-wide scale as a function of HOx operations. Sediment microbial biomass as quantified by DNA concentration was increased in regions most influenced by the HOx. Following an initial decrease in biomass in the upper sediment while oxygen concentrations were low, biomass typically increased at all depths as the 4-month-long oxygenation season progressed. A distinct shift in microbial community structure was only observed at the end of the season in the upper sediment near the HOx. While this shift was correlated to HOx-enhanced oxygen availability, increased TOC levels and precipitation of Fe- and Mn-oxides, abiotic controls on Fe and Mn cycling, and/or the adaptability of many bacteria to variations in prevailing electron acceptors may explain the delayed response and the comparatively limited changes at other locations. While the sediment microbial community proved remarkably resistant to relatively short-term changes in HOx operations, HOx-induced variation in microbial structure, biomass, and activity was observed after a full season of oxygenatio

    Eintrag von Antibiotika und Antibiotikaresistenzen in Wassersysteme der Schweiz: Ein Überblick über die Lage in Bezug auf Antibiotikaresistenzen und ihre Ausbreitung in die Umwelt

    Get PDF
    Zusammenfassung: Hintergrund: Entwicklung und Verbreitung von Antibiotikaresistenzen bei bakteriellen Krankheitserregern stellen ein ernstzunehmendes Problem dar. Mit kommunalen Abwässern oder durch landwirtschaftliche Einträge können Antibiotikaresistenzen und Antibiotika in natürliche Gewässer gelangen. Sie werden daher zunehmend als eine neue Form der Umweltverschmutzung angesehen. Literaturstudie: Der Artikel gibt anhand einer Analyse der Fachliteratur einen Überblick über die Situation in der Schweiz, ein Land welches im europäischen Vergleich einen sehr niedrigen Antibiotikaverbrauch und geringe Fallzahl von Infektionen mit resistenten Keimen aufweist. Neben einem Überblick über die Lage in der Humanmedizin und in der Landwirtschaft liegt der Fokus auf dem Eintrag von Antibiotika und Antibiotikaresistenzen in den Wasserkreislauf. Obwohl die Datenlage noch lückenhaft ist, ist der Eintrag von Antibiotika und von resistenten Bakterien in die Umwelt für die Schweiz insgesamt gut belegt. Schlussfolgerung: Da selbst für den "best case" Schweiz eine nennenswerte Belastung mit Resistenzfaktoren feststellbar ist, ist in anderen europäischen Ländern mit ungünstigeren Rahmenbedingungen mit noch ernsteren Belastungen zu rechnen. Zusätzliche Reinigungsstufen bei der Abwasserbehandlung erscheinen als sinnvolle Mabnahme gegen die Ausbreitung von Antibiotikaresistenzen

    Potential and limits of InSAR to characterize interseismic deformation independently of GPS data: Application to the southern San Andreas Fault system

    Get PDF
    The evaluation of long-wavelength deformation associated with interseismic strain accumulation traditionally relies on spatially sparse GPS measurements, or on high spatial-resolution InSAR velocity fields aligned to a GPS-based model. In this approach the InSAR contributes only short-wavelength deformation and the two data sets are dependent, thereby challenging the evaluation of the InSAR uncertainties and the justification of atmospheric corrections. Here we present an analysis using 7 years of Envisat InSAR data to characterize interseismic deformation along the southern San Andreas Fault (SAF) and the San Jacinto Fault (SJF) in southern California, where the SAF bifurcates onto the Mission Creek (MCF) and the Banning (BF) fault strands. We outline the processing steps for using InSAR alone to characterize both the short- and long-wavelength deformation, and evaluate the velocity field uncertainties with independent continuous GPS data. InSAR line-of-sight (LOS) and continuous GPS velocities agree within ∼1–2 mm/yr in the study area, suggesting that multiyear InSAR time series can be used to characterize interseismic deformation with a higher spatial resolution than GPS. We investigate with dislocation models the ability of this mean LOS velocity field to constrain fault slip rates and show that a single viewing geometry can help distinguish between different slip-rate scenarios on the SAF and SJF (∼35 km apart) but multiple viewing geometries are needed to differentiate slip on the MCF and BF (<12 km apart). Our results demonstrate that interseismic models of strain accumulation used for seismic hazards assessment would benefit from the consideration of InSAR mean velocity maps

    Microbial communities in contrasting freshwater marsh microhabitats

    Get PDF
    Heterotrophic microorganisms are widely recognized as crucial components of ecosystems; yet information on their community structure and dynamics in benthic freshwater habitats is notably scarce. Using denaturing gradient gel electrophoresis (DGGE), we determined the composition of bacterial and fungal communities in a freshwater marsh over four seasons. DGGE revealed diverse bacterial communities in four contrasting microhabitats. The greatest compositional differences emerged between water-column and surface-associated bacteria, although communities associated with sediment also differed from those on plant litter and epiphytic biofilms. Sequences of bacterial clones derived from DGGE bands belonged to the Alphaproteobacteria (31%), Actinobacteria (19%) and Bacteriodetes (19%). Betaproteobacteria were notably absent. Fungal clones obtained from leaf litter were mainly Ascomycota, but two members of the Basidiomycota were also identified. Overall, habitat type was the most important factor explaining variation in bacterial communities among samples, whereas temporal patterns in community composition were less pronounced in spite of large seasonal variation in environmental conditions such as temperature. The observed differences among bacterial communities in different microhabitats were not caused by random variation, but rather appeared to be determined by habitat characteristics, as evidenced by largely congruent community profiles of replicate samples taken at 10-100m distances within the mars

    Local Conditions Structure Unique Archaeal Communities in the Anoxic Sediments of Meromictic Lake Kivu

    Get PDF
    Meromictic Lake Kivu is renowned for its enormous quantity of methane dissolved in the hypolimnion. The methane is primarily of biological origin, and its concentration has been increasing in the past half-century. Insight into the origin of methane production in Lake Kivu has become relevant with the recent commercial extraction of methane from the hypolimnion. This study provides the first culture-independent approach to identifying the archaeal communities present in Lake Kivu sediments at the sediment-water interface. Terminal restriction fragment length polymorphism analysis suggests considerable heterogeneity in the archaeal community composition at varying sample locations. This diversity reflects changes in the geochemical conditions in the sediment and the overlying water, which are an effect of local groundwater inflows. A more in-depth look at the archaeal community composition by clone library analysis revealed diverse phylogenies of Euryarchaeota and Crenarachaeota. Many of the sequences in the clone libraries belonged to globally distributed archaeal clades such as the rice cluster V and Lake Dagow sediment environmental clusters. Several of the determined clades were previously thought to be rare among freshwater sediment Archaea (e.g., sequences related to the SAGMEG-1 clade). Surprisingly, there was no observed relation of clones to known hydrogentrophic methanogens and less than 2% of clones were related to acetoclastic methanogens. The local variability, diversity, and novelty of the archaeal community structure in Lake Kivu should be considered when making assumptions on the biogeochemical functioning of its sediment

    High Diversity of Diazotrophs in the Forefield of a Receding Alpine Glacier

    Get PDF
    Forefields of receding glaciers are unique and sensitive environments representing natural chronosequences. In such habitats, microbial nitrogen fixation is of particular interest since the low concentration of bioavailable nitrogen is one of the key limitations for growth of plants and soil microorganisms. Asymbiotic nitrogen fixation in the Damma glacier (Swiss Central Alps) forefield soils was assessed using the acetylene reduction assay. Free-living diazotrophic diversity and population structure were resolved by assembling four NifH sequence libraries for bulk and rhizosphere soils at two soil age classes (8- and 70-year ice-free forefield). A total of 318 NifH sequences were analyzed and grouped into 45 unique phylotypes. Phylogenetic analyses revealed a higher diversity as well as a broader distribution of NifH sequences among phylogenetic clusters than formerly observed in other environments. This illustrates the importance of free-living diazotrophs and their potential contribution to the global nitrogen input in this nutrient-poor environment. NifH diversity in bulk soils was higher than in rhizosphere soils. Moreover, the four libraries displayed low similarity values. This indicated that both soil age and the presence of pioneer plants influence diversification and population structure of free-living diazotroph

    Dynamically Triggered Changes of Plate Interface Coupling in Southern Cascadia

    Get PDF
    In subduction zones, frictional locking on the subduction interface produces year-by-year surface deformation that is measurable with GPS. During the interseismic period of the earthquake cycle, lasting hundreds of years between major earthquakes, these ground motions are usually constant with time because the locking on the plate interface is relatively unchanging. However, at the Mendocino Triple Junction in Northern California, we find evidence for slight changes in GPS interseismic motion within the last decade that challenge the assumption of constant interseismic deformation. Our results suggest changes in interseismic coupling on the southernmost Cascadia Subduction Zone. Interestingly, these coupling changes appear to be related to large offshore earthquakes and are perhaps triggered by the seismic shaking during those events. These results have important implications for our understanding of seismic hazard in subduction zones.National Science Foundation (NSF). Grant Number: EAR-1841371NSF Graduate Research Fellowship Program and NSF. Grant Number: OCE-1905098NSF Cooperative Agreement. Grant Number: EAR-073515

    Increased Levels of Multiresistant Bacteria and Resistance Genes after Wastewater Treatment and Their Dissemination into Lake Geneva, Switzerland

    Get PDF
    At present, very little is known about the fate and persistence of multiresistant bacteria (MRB) and their resistance genes in natural aquatic environments. Treated, but partly also untreated sewage of the city of Lausanne, Switzerland is discharged into Vidy Bay (Lake Geneva) resulting in high levels of contamination in this part of the lake. In the present work we have studied the prevalence of MRB and resistance genes in the wastewater stream of Lausanne. Samples from hospital and municipal raw sewage, treated effluent from Lausanne’s wastewater treatment plant (WTP) as well as lake water and sediment samples obtained close to the WTP outlet pipe and a remote site close to a drinking water pump were evaluated for the prevalence of MRB. Selected isolates were identified (16S rRNA gene fragment sequencing) and characterized with regards to further resistances, resistance genes, and plasmids. Mostly, studies investigating this issue have relied on cultivation-based approaches. However, the limitations of these tools are well known, in particular for environmental microbial communities, and cultivation-independent molecular tools should be applied in parallel in order to take non-culturable organisms into account. Here we directly quantified the sulfonamide resistance genes sul1 and sul2 from environmental DNA extracts using TaqMan real-time quantitative PCR. Hospital sewage contained the highest load of MRB and antibiotic resistance genes (ARGs). Wastewater treatment reduced the total bacterial load up to 78% but evidence for selection of extremely multiresistant strains and accumulation of resistance genes was observed. Our data clearly indicated pollution of sediments with ARGs in the vicinity of the WTP outlet. The potential of lakes as reservoirs of MRB and potential risks are discussed
    corecore