research

Senior Thesis ST 2011-02

Abstract

Agriculture in the Arctic is often limited by the low receipt of heat energy, which is often measured in growing degree days (GDD). With the advent of increasingly powerful climate modeling, projection and downscaling techniques, it is becoming possible to examine future climates in high resolution. Recent availability in Alaska has prompted interest in examining the distribution of current and the potential future of local agriculture. The goal of this study was to utilize Scenarios Network for Alaska Planning (SNAP) downscaled, ensemble projections to examine this in terms of GDDs in the Fairbanks North Star Borough of Alaska. Historic and projected monthly mean temperatures were utilized to calculate GDDs and then map the borough at a 4 km2 scale. Additionally, local agriculturalists were interviewed in order to put these theoretical calculations into context. Ultimately, projections of the examined agricultural locations showed an average of a 2% increase in GDD per decade and a 26% increase in GDDs from 1949 to 2099. This project indicated that the North Star Borough will receive increased heat energy due to climate change over the next century that may further enable increased yields and varieties of crops

    Similar works