Probing nanoscale spatial distribution of plasmonically excited hot carriers

Abstract

表面等离激元(SP)效应可产生远高于热平衡下费米能级能量的热电子-空穴对(热载流子),从而能够引发和促进相关的光电或者化学过程,为在纳米尺度上高效利用光能实现物质和能量转化提供了极为有效的手段,化学化工学院任斌教授课题组利用前期自主发展的电化学针尖增强拉曼光谱技术,通过调控电位开关SP热载流子催化的反应,实现了有效热载流子催化反应区域的纳米分辨成像,使反应区域在实空间的分布可视化。实验上获得了有效热载流子的输运距离,从而证明了能量越高的热载流子越需要在更短的输运距离范围内收集捕获。 该工作在任斌教授和王翔副教授的共同指导下完成。实验主要由化学化工学院已毕业博士生黄声超完成。理论计算主要由电子科学与技术学院的朱锦峰副教授和已毕业硕士生李察微完成。此外,化学化工学院已毕业硕士生赵庆庆、博后何玉韩和胡树等人也参与了部分研究与课题讨论。【Abstract】Surface plasmons (SPs) of metals enable the tight focusing and strong absorption of light to realize an efficient utilization of photons at nanoscale. In particular, the SP-generated hot carriers have emerged as a promising way to efficiently drive photochemical and photoelectric processes under moderate conditions. In situ measuring of the transport process and spatial distribution of hot carriers in real space is crucial to efficiently capture the hot carriers.Here, we use electrochemical tip-enhanced Raman spectroscopy (EC-TERS) to in situmonitor an SP-driven decarboxylation and resolve the spatial distribution of hot carriers with a nanometer spatial resolution. The transport distance of about 20 nm for the reactive hot carriers is obtained from the TERS imaging result. The hot carriers with a higher energy have a shorter transport distance. These conclusions can be guides for the design and arrangement of reactants and devices to efficiently make use of plasmonic hot carriers.The authors acknowledge the financial supports from MOST of China (2016YFA0200601), NSFC (21633005, 21790354, 21503181, 21711530704, U1830116), Natural Science Foundation of Fujian Province (2016J05046), China Postdoctoral Science Foundation (2017M622062) and the Fundamental Research Funds for the Central Universities (20720190010).本研究工作得到了国家自然科学基金委和科技部等的资助和支持

    Similar works