Abstract

Plant growth and development are supported by plastic but strong cell walls. These walls consist largely of polysaccharides that vary in content and structure. Most of the polysaccharides are produced in the Golgi apparatus and are then secreted to the apoplast and built into the growing walls. However, the two glucan polymers cellulose and callose are synthesized at the plasma membrane by cellulose or callose synthase complexes, respectively. Cellulose is the most common cell wall polymer in land plants and provides strength to the walls to support directed cell expansion. In contrast, callose is integral to specialized cell walls, such as the cell plate that separates dividing cells and growing pollen tube walls, and maintains important functions during abiotic and biotic stress responses. The last years have seen a dramatic increase in our understanding of how cellulose and callose are manufactured, and new factors that regulate the synthases have been identified. Much of this knowledge has been amassed via various microscopy-based techniques, including various confocal techniques and super-resolution imaging. Here, we summarize and synthesize recent findings in the fields of cellulose and callose synthesis in plant biology

    Similar works