We present a new, galaxy-halo model of large-scale structure, in which the
galaxies entering a given sample are the fundamental objects. Haloes attach to
galaxies, in contrast to the standard halo model, in which galaxies attach to
haloes. The galaxy-halo model pertains mainly to the relationships between the
power spectra of galaxies and mass, and their cross-power spectrum. With
surprisingly little input, an intuition-aiding approximation to the
galaxy-matter cross-correlation coefficient R(k) emerges, in terms of the halo
mass dispersion. This approximation seems valid to mildly non-linear scales (k
< ~3 h/Mpc), allowing measurement of the bias and the matter power spectrum
from measurements of the galaxy and galaxy-matter power spectra (or correlation
functions). This is especially relevant given the recent advances in precision
in measurements of the galaxy-matter correlation function from weak
gravitational lensing. The galaxy-halo model also addresses the issue of
interpreting the galaxy-matter correlation function as an average halo density
profile, and provides a simple description of galaxy bias as a function of
scale.Comment: 13 pages, 9 figures, submitted to MNRAS. Minor changes, suggested by
refere