Abstract

We present a new, galaxy-halo model of large-scale structure, in which the galaxies entering a given sample are the fundamental objects. Haloes attach to galaxies, in contrast to the standard halo model, in which galaxies attach to haloes. The galaxy-halo model pertains mainly to the relationships between the power spectra of galaxies and mass, and their cross-power spectrum. With surprisingly little input, an intuition-aiding approximation to the galaxy-matter cross-correlation coefficient R(k) emerges, in terms of the halo mass dispersion. This approximation seems valid to mildly non-linear scales (k < ~3 h/Mpc), allowing measurement of the bias and the matter power spectrum from measurements of the galaxy and galaxy-matter power spectra (or correlation functions). This is especially relevant given the recent advances in precision in measurements of the galaxy-matter correlation function from weak gravitational lensing. The galaxy-halo model also addresses the issue of interpreting the galaxy-matter correlation function as an average halo density profile, and provides a simple description of galaxy bias as a function of scale.Comment: 13 pages, 9 figures, submitted to MNRAS. Minor changes, suggested by refere

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/12/2021
    Last time updated on 01/04/2019