Positronium (the bound state of electron and positron) has been thought to be
formed after proton decay (>1034yr) through collisional recombination and
then decays by pair annihilation, thereby changing the matter content of the
universe. We revisit the issue of the formation of positronium in the long-term
future of the universe in light of recent indication that the universe is
dominated by dark energy and dark matter. We find that if the equation of state
of dark energy w is less than -1/3 (including the cosmological constant
w=−1), then the formation of positronium would not be possible, while it is
possible through bound-bound transitions for -1/3\siml w\siml-0.2, or through
collisional recombination for w\simg-0.2. The radiation from \epm pair
annihilation cannot dominate over \epm, while that from proton decay will
dominate over baryon and \epm for a while but not over dark matter.Comment: 13 pages, to appear in JCA