Abstract

In response to the gradual degradation of natural sources, there is a growing interest in adopting renewable resources for various building energy supply. In this study, a comprehensive life cycle assessment approach is proposed for a renewable multi-energy system (MES) to evaluate its primary energy consumption, economy cost and carbon emission from cradle to grave. The MES, consisting of passive side and active side, is fully driven by renewable energy including solar, wind and biomass. On the passive side, building integrated photovoltaic, solar collector and wind turbines are adopted. On the active side, the biomass-fuelled combined cooling heating and power system (CCHP) serves as the primary energy supplier. The electric compression chiller and biomass boiler are adopted when the thermal energy from the CCHP system is not sufficient, while electricity is imported from the city power grid when the electricity demand is low. A representative office building in the United Kingdom and real-life inventory data is adopted to demonstrate the effectiveness of the proposed life cycle assessment approach. Through life cycle assessment, the advantages and disadvantages of the MES are compared with the reference CCHP system and conventional separate system in view of life cycle primary energy consumption, economy cost and carbon emission. Moreover, to gain an insight into the life cycle performance, the sensitivity analysis is conducted on the rated capacity of the power generation unit, climate zones, life span, recycle ratio and interest rate. The life cycle cost of MES is relatively higher than the conventional separate system mainly owing to the high construction cost of BIPV, wind turbine, solar collector and biomass feedstock. However, its life cycle primary energy consumption and carbon emission are much lower. It is believed that the proposed life cycle assessment approach can provide useful guidelines for government in policymaking and for building engineers in retrofitting works

    Similar works