We use a combination of high spatial resolution optical and near-IR
spectroscopic data to make a detailed study of the kinematics of the NLR gas in
the near-nuclear regions of the powerful, FRII radio galaxy Cygnus A
(z=0.0560), with the overall goal of placing limits on the mass of any
supermassive black hole in the core. Our K-band infrared observations (0.75
arcsec seeing) -- taken with NIRSPEC on the Keck II telescope -- show a smooth
rotation pattern across the nucleus in the Paschen alpha and H_2 emission lines
along a slit position (PA180) close to perpendicular to the radio axis,
however, there is no evidence for such rotation along the radio axis (PA105).
Higher spatial resolution observations of the [OIII]5007 emission line -- taken
with STIS on the Hubble Space Telescope (HST) -- confirm the general rotation
pattern of the gas in the direction perpendicular to the radio axis, and
provide evidence for steep velocity gradients within a radius of 0.1 arcsec of
the core. The circular velocities measured from both the Keck and HST data lead
to an estimate of the mass of the supermassive black hole of 2.5+/-0.7x10^9
solar masses. For the host galaxy properties of Cygnus A, this mass is
consistent with the global correlations between black hole mass and host galaxy
properties deduced for non-active galaxies. Therefore, despite the extreme
power of its radio source and the quasar-like luminosity of its AGN, the black
hole in Cygnus A is not unusually massive considering theluminosity of its host
galaxy. Indeed, the estimated mass of the black hole in Cygnus A is similar to
that inferred for the supermassive black hole in the FRI radio galaxy M87,
despite the fact that the AGN and radio jets of Cygnus A are 2 -- 3 orders of
magnitude more powerful.Comment: 17 pages, 12 figure