Abstract

We investigate the universal Jacobian of degree n line bundles over the Hurwitz stack of double covers of P^1 by a curve of genus g. Our main results are: the construction of a smooth, irreducible, universally closed (but not separated) moduli compactification of this universal Jacobian; a description of the global geometry and moduli properties of these stacks; and a computation of the Picard groups of these stacks in the cases when n-g is even. An important ingredient of our work is the parametrization of line bundles on double covers by binary quadratic forms. This parametrization generalizes the classical number theoretic correspondence between ideal classes of quadratic rings and integral binary quadratic forms, which in particular gives the group law on integral binary quadratic forms first discovered by Gauss.Comment: mathematical and expositional updates and improvements, 29 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions