We explore SNe Ia as p-process sites in the framework of two-dimensional SN
Ia delayed detonation and pure deflagration models. The WD precursor is assumed
to have reached the Chandrasekhar mass in a binary system by mass accretion
from a giant/main sequence companion. We use enhanced s-seed distributions,
obtained from a sequence of thermal pulse instabilities both in the AGB phase
and in the accreted material. We apply the tracer-particle method to
reconstruct the nucleosynthesis by the thermal histories of Lagrangian
particles, passively advected in the hydrodynamic calculations. For each
particle we follow the explosive nucleosynthesis with a detailed network for
all isotopes up to 209Bi. We find that SNe Ia can produce a large amount of
p-nuclei, both the light p-nuclei below A=120 and the heavy-p nuclei, at quite
flat average production factors, tightly related to the s-process seed
distribution. For the first time, we find a stellar source able to produce
both, light and heavy p-nuclei almost at the same level as 56Fe, including the
very debated neutron magic 92,94Mo and 96,98Ru. We also find that there is an
important contribution from p-process nucleosynthesis to the s-only nuclei
80Kr, 86Sr, to the neutron magic 90Zr, and to the neutron-rich 96Zr. Finally,
we investigate the metallicity effect on p-process. Starting with different
s-process seed distributions, for two metallicities Z = 0.02 and Z = 0.001,
running SNe Ia models with different initial composition, we estimate that SNe
Ia can contribute to, at least, 50% of the solar p-process composition.Comment: 62 pages, 14 figures, 5 tables, ApJ in pres