Reference-free measurements of the 1s 2s 2p 2PO1=2;3=2 ! 1s2 2s 2S1=2 and 1s 2s 2p 4P5=2 ! 1s2 2s 2S1=2 transition energies and widths in lithiumlike sulfur and argon ions

Abstract

We have measured the widths and energies of the 1s2s2p 2 P 1/2,3/2 → 1s 2 2s 2 S 1/2 transitions in lithiumlike sulfur and argon, as well as the energies of the forbidden 1s2s2p 4 P 5/2 → 1s 2 2s 2 S 1/2 M2 transition in both elements. All measurements were performed with a double-flat crystal spectrometer without the use of any reference line. The transition energy measurements have accuracies ranging from 2.3 ppm to 6.4 ppm depending on the element and line intensity. The widths and the intensity ratios of the 1s2s2p 2 P 1/2,3/2 → 1s 2 2s 2 S 1/2 lines have also been measured. These are the first reference-free measurements of transitions in core-excited lithiumlike ions, and have an accuracy comparable to the best relative measurements. We have also performed multi-configuration Dirac-Fock calculations of the widths, energies and intensity ratios. Extensive comparison between existing experimental results and theory is performed, and Bayesian techniques employed to extract the energy of the 1s 2p 2 4 P 1/2 → 1s 2 2p 2 P 1/2 transition in sulfur and identify contaminant transitions

    Similar works