research

Identification of DNA sequence variation in Campylobacter jejuni strains associated with the Guillain-Barre syndrome by high-throughput AFLP analysis.

Abstract

BACKGROUND: Campylobacter jejuni is the predominant cause of antecedent infection in post-infectious neuropathies such as the Guillain-Barre (GBS) and Miller Fisher syndromes (MFS). GBS and MFS are probably induced by molecular mimicry between human gangliosides and bacterial lipo-oligosaccharides (LOS). This study describes a new C. jejuni-specific high-throughput AFLP (htAFLP) approach for detection and identification of DNA polymorphism, in general, and of putative GBS/MFS-markers, in particular. RESULTS: We compared 6 different isolates of the "genome strain" NCTC 11168 obtained from different laboratories. HtAFLP analysis generated approximately 3000 markers per stain, 19 of which were polymorphic. The DNA polymorphisms could not be confirmed by PCR-RFLP analysis, suggesting a baseline level of 0.6% AFLP artefacts. Comparison of NCTC 11168 with 4 GBS-associated strains revealed 23 potentially GBS-specific markers, 17 of which were identified by DNA sequencing. A collection of 27 GBS/MFS-associated and 17 enteritis control strains was analyzed with PCR-RFLP tests based on 11 of these markers. We identified 3 markers, located in the LOS biosynthesis genes cj1136, cj1138 and cj1139c

    Similar works