research

Thermodynamics of rotating Bose gases in a trap

Abstract

Novel ground state properties of rotating Bose gases have been intensively studied in the context of neutral cold atoms. We investigate the rotating Bose gas in a trap from a thermodynamic perspective, taking the charged ideal Bose gas in magnetic field (which is equivalent to a neutral gas in a synthetic magnetic field) as an example. It is indicated that the Bose-Einstein condensation temperature is irrelevant to the magnetic field, conflicting with established intuition that the critical temperature decreases with the field increasing. The specific heat and Landau diamagnetization also exhibit intriguing behaviors. In contrast, we demonstrate that the condensation temperature for neutral Bose gases in a rotating frame drops to zero in the fast rotation limit, signaling a non-condensed quantum phase in the ground state.Comment: 4 pages, 1 figur

    Similar works

    Full text

    thumbnail-image

    Available Versions