The interaction between interplanetary small-scale magnetic flux ropes and
the magnetic field in the ambient solar wind is an important topic to
understand- ing the evolution of magnetic structures in the heliosphere.
Through a survey of 125 previously reported small flux ropes from 1995 to 2005,
we find that 44 of them reveal clear signatures of Alfvenic fluctuations, and
thus classify them into Alfven wave trains rather than flux ropes. Signatures
of magnetic reconnection, generally including a plasma jet of ~30 km/s within a
magnetic field rotational region, are clearly present at boundaries of about
42% of the flux ropes and 14% of the wave trains. The reconnection exhausts are
often observed to show a local increase in the proton temperature, density and
plasma beta. About 66% of the reconnection events at flux rope boundaries are
associated with a magnetic field shear angle larger than 90 deg and 73% of them
reveal a decrease by 20% or more in the magnetic field magnitude, suggesting a
dominance of anti-parallel reconnec- tion at flux rope boundaries. The
occurrence rate of magnetic reconnection at flux rope boundaries through the
year of 1995 to 2005 is also investigated and we find that it is relatively low
around solar maximum and much higher when ap- proaching solar minima. The
average magnetic field depression and shear angle for reconnection events at
flux rope boundaries also reveal a similar trend from 1995 to 2005. Our results
demonstrate for the first time that boundaries of a substantial fraction of
small-scale flux ropes have properties similar to those of magnetic clouds, in
the sense that both of them exhibit signatures of magnetic reconnection. The
observed reconnection signatures could be related either to the formation of
small flux ropes, or to the interaction between flux ropes and the
interplanetary magnetic fields.Comment: 10 figures, accepted by Ap