research

How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples

Abstract

Aiming at non-experts, we explain the key mechanisms of higher-spin extensions of ordinary gravity. We first overview various no-go theorems for low-energy scattering of massless particles in flat spacetime. In doing so we dress a dictionary between the S-matrix and the Lagrangian approaches, exhibiting their relative advantages and weaknesses, after which we high-light potential loop-holes for non-trivial massless dynamics. We then review positive yes-go results for non-abelian cubic higher-derivative vertices in constantly curved backgrounds. Finally we outline how higher-spin symmetry can be reconciled with the equivalence principle in the presence of a cosmological constant leading to the Fradkin--Vasiliev vertices and Vasiliev's higher-spin gravity with its double perturbative expansion (in terms of numbers of fields and derivatives).Comment: LaTeX, 50 pages, minor changes, many refs added; version accepted for publication in Reviews of Modern Physic

    Similar works

    Full text

    thumbnail-image

    Available Versions